
mcetl Documentation
Release 0.4.1

Donald Erb

Jan 26, 2021

CONTENTS:

1 Introduction 3
1.1 Purpose . 3
1.2 Limitations . 3

2 Installation 5
2.1 Dependencies . 5
2.2 Stable Release . 5
2.3 Development Version . 6

3 Quick Start 7
3.1 Main GUI . 7
3.2 Fitting Data . 7
3.3 Plotting . 8

4 Tutorials 9
4.1 Main GUI . 9
4.2 Fitting GUI . 24
4.3 Plotting GUI . 25
4.4 Importing Data . 26
4.5 Writing to Excel . 29
4.6 Example Data & Programs . 33

5 API Reference 35
5.1 mcetl . 35

6 Gallery 85

7 Contributing 93
7.1 Bugs Reports/Feedback . 93
7.2 Pull Requests . 93

8 Changelog 95
8.1 Version 0.4.1 (2021-01-26) . 95
8.2 Version 0.4.0 (2021-01-24) . 95
8.3 Version 0.3.0 (2020-11-08) . 99
8.4 Version 0.2.0 (2020-10-05) . 100
8.5 Version 0.1.2 (2020-09-15) . 101
8.6 Version 0.1.1 (2020-09-14) . 101
8.7 Version 0.1.0 (2020-09-12) . 102

9 License 103

i

10 Author 105

11 Indices and Tables 107

Python Module Index 109

Index 111

ii

mcetl Documentation, Release 0.4.1

mcetl is a small-scale, GUI-based Extract-Transform-Load framework focused on materials characterization.

• For Python 3.7+

• Open Source: BSD 3-Clause License

• Source Code: https://github.com/derb12/mcetl

• Documentation: https://mcetl.readthedocs.io.

mcetl is focused on reducing the time required to repeatedly process data files and write the results to Excel. It does
this by allowing the user to define DataSource objects for each separate source of data. Each DataSource contains
information such as the options needed to import data from files, the calculations that will be performed on the data,
and the options for writing the data to Excel. Once a DataSource is created, it can be selected within mcetl's main user
interface.

In addition, mcetl provides fitting and plotting user interfaces that can be used without any prior setup.

CONTENTS: 1

https://github.com/derb12/mcetl
https://mcetl.readthedocs.io

mcetl Documentation, Release 0.4.1

2 CONTENTS:

CHAPTER

ONE

INTRODUCTION

1.1 Purpose

The aim of mcetl is to ease the repeated processing of data files. Contrary to its name, mcetl can process any tabulated
files (txt, csv, tsv, xlsx, etc.), and does not require that the files originate from materials characterization. However, the
focus on materials characterization was selected because:

• Most data files from materials characterization are relatively small in size (a few kB or MB).

• Materials characterization files are typically cleanly tabulated and do not require handling messy or missing
data.

• It was the author's area of usage and naming things is hard...

mcetl requires only a very basic understanding of Python to use, and allows a single person to create a tool that their
entire group can use to process data and produce Excel files with a consistent style. mcetl can create new Excel files
when processing data or saving peak fitting results, or it can append to an existing Excel file to easily work with already
created files.

1.2 Limitations

• Data from files is fully loaded into memory for processing, so mcetl is not suited for processing files whose total
memory size is large (e.g. cannot load a 10 GB file on a computer with only 8 GB of RAM).

• mcetl does not provide any resources for processing data files directly from characterization equipment (such as
.XRDML, .PAR, etc.). Other libraries such as xylib1 already exist and are capable of converting many such files
to a format mcetl can use (txt, csv, etc.).

• The peak fitting and plotting modules in mcetl are not as feature-complete as other alternatives such as Origin2,
fityk3, SciDAVis4, etc. The modules are included in mcetl in case those better alternatives are not available, and
the author highly recommends using those alternatives over mcetl if available.

1 https://github.com/wojdyr/xylib
2 https://originlab.com
3 https://fityk.nieto.pl
4 https://sourceforge.net/projects/scidavis/

3

https://github.com/wojdyr/xylib
https://originlab.com
https://fityk.nieto.pl
https://sourceforge.net/projects/scidavis/

mcetl Documentation, Release 0.4.1

4 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

2.1 Dependencies

mcetl requires Python5 version 3.7 or later and the following libraries:

• asteval6

• lmfit7 (>= 1.0)

• Matplotlib8 (>= 3.1)

• NumPy9 (>= 1.8)

• openpyxl10 (>= 2.4)

• pandas11 (>= 0.25)

• PySimpleGUI12 (>= 4.29)

• SciPy13

All of the required libraries should be automatically installed when installing mcetl using either of the two installation
methods below.

Additionally, mcetl can optionally use Pillow14 to allow for additional options when saving figures in the plotting GUI.

2.2 Stable Release

mcetl is easily installed from pypi15 using pip16, simply by running the following command in your terminal:

pip install --upgrade mcetl

5 https://python.org
6 https://github.com/newville/asteval
7 https://lmfit.github.io/lmfit-py/
8 https://matplotlib.org
9 https://numpy.org

10 https://openpyxl.readthedocs.io/en/stable/
11 https://pandas.pydata.org
12 https://github.com/PySimpleGUI/PySimpleGUI
13 https://www.scipy.org/scipylib/index.html
14 https://python-pillow.org/
15 https://pypi.org/project/mcetl
16 https://pip.pypa.io

5

https://python.org
https://github.com/newville/asteval
https://lmfit.github.io/lmfit-py/
https://matplotlib.org
https://numpy.org
https://openpyxl.readthedocs.io/en/stable/
https://pandas.pydata.org
https://github.com/PySimpleGUI/PySimpleGUI
https://www.scipy.org/scipylib/index.html
https://python-pillow.org/
https://pypi.org/project/mcetl
https://pip.pypa.io

mcetl Documentation, Release 0.4.1

This is the preferred method to install mcetl, as it will always install the most recent stable release. Note that the
--upgrade tag is used to ensure that the most recent version of mcetl is downloaded and installed, even if an older
version is currently installed.

2.3 Development Version

The sources for mcetl can be downloaded from the Github repo17.

The public repository can be cloned using:

git clone https://github.com/derb12/mcetl.git

Once the repository is downloaded, it can be installed with:

cd mcetl
python setup.py install

17 https://github.com/derb12/mcetl

6 Chapter 2. Installation

https://github.com/derb12/mcetl

CHAPTER

THREE

QUICK START

The sections below give a quick introduction to using mcetl, requiring no setup. For a more detailed introduction, refer
to the tutorials section (page 9) of the documentation.

Note: On Windows operating systems, the GUIs can appear blurry due to how dpi scaling is handled. To fix, simply
do:

import mcetl
mcetl.set_dpi_awareness()

The above code must be called before opening any GUIs, or else the dpi scaling will be incorrect.

3.1 Main GUI

The main GUI for mcetl contains options for processing data, fitting, plotting, writing data to Excel, and moving files.

Before using the main GUI, DataSource objects must be created. Each DataSource contains the information for reading
files for that DataSource (such as what separator to use, which rows and columns to use, labels for the columns, etc.),
the calculations that will be performed on the data, and the options for writing the data to Excel (formatting, placement
in the worksheet, etc.).

The following will create a DataSource named 'tutorial' with the default settings, and will then open the main GUI.

import mcetl

simple_datasource = mcetl.DataSource(name='tutorial')
mcetl.launch_main_gui([simple_datasource])

3.2 Fitting Data

To use the fitting module in mcetl, simply do:

from mcetl import fitting
fitting.launch_fitting_gui()

A window will then appear to select the data file(s) to be fit and the Excel file for saving the results. No other setup is
required for doing fitting.

After doing the fitting, the fit results and plots will be saved to Excel.

7

mcetl Documentation, Release 0.4.1

3.3 Plotting

To use the plotting module in mcetl, simply do:

from mcetl import plotting
plotting.launch_plotting_gui()

Similar to fitting, a window will then appear to select the data file(s) to be plotted, and no other setup is required for
doing plotting.

When plotting, the image of the plots can be saved to all formats supported by Matplotlib18, including tiff, jpg, png,
svg, and pdf.

In addition, the layout of the plots can be saved to apply to other figures later, and the data for the plots can be saved
so that the entire plot can be recreated.

To reopen a figure saved through mcetl, do:

plotting.load_previous_figure()

18 https://matplotlib.org

8 Chapter 3. Quick Start

https://matplotlib.org

CHAPTER

FOUR

TUTORIALS

Tutorials are available for using the main, fitting, and plotting GUIs, as well as for importing data, changing the style
of the Excel output, and generating example raw data.

4.1 Main GUI

The Main GUI for mcetl contains options for processing data, fitting data, plotting data, writing data to Excel, and
moving files. Before using the Main GUI, DataSource and Function objects must be created.

Each DataSource (page 54) object contains the information for reading files for that DataSource (such as what
separator to use, which rows and columns to use, labels for the columns, etc.), the calculations that will be performed
on the data, and the options for writing the data to Excel (formatting, placement in the worksheet, etc.).

Function objects come in three types:

• PreprocessFunction (page 65): process each data entry as soon as it is imported from the files

• CalculationFunction (page 64): process each entry in each sample in each dataset

• SummaryFunction (page 65): process each sample or each dataset; performed last

Naming Conventions

Within the tutorials, data is sectioned into datasets, samples, and entries. This is done to help understand the grouping
of data. A dataset can be considered a single, large grouping of data whose contents are all related somehow. If writing
to Excel, each dataset will occupy its own sheet. A sample is a grouping within a dataset, and can contain multiple
data entries. Each entry can be considered as the contents of a single file, but could be broken down further if desired.

For example, consider a study of the effects of processing temperature and carbon percentage on the mechanical
properties of steel. If there are two processing temperatures (700°C and 800°C) five different carbon amounts (0 wt%,
1 wt%, 2 wt%, 3 wt%, and 4 wt%), and three measurements per sample, then the following grouping could be made:

• Dataset 1 (700°C)

– Sample 1 (0 wt% carbon)

* Entry 1 (first measurement file)

* Entry 2 (second measurement file)

* Entry 3 (third measurement file)

– Sample 2 (1 wt% carbon)

* Entry 1 (first measurement file)

* Entry 2 (second measurement file)

* Entry 3 (third measurement file)

9

mcetl Documentation, Release 0.4.1

– Sample 3 etc...

• Dataset 2 (800°C)

– Sample 1 (0 wt% carbon)

* Entry 1 (first measurement file)

* Entry 2 (second measurement file)

* Entry 3 (third measurement file)

– Sample 2 etc...

4.1.1 Creating Function Objects

Function objects are simple wrappers around functions that allow referencing the function by a name, specifying
which columns the function should act on, and other relevant information about the function's behavior. Function
objects come in three types:

• PreprocessFunctions: process each data entry as soon as it is imported from the files

• CalculationFunctions: process each entry in each sample in each dataset

• SummaryFunctions: process each sample or each dataset; performed last

Note that all functions will process pandas DataFrames19. To speed up calculations within the functions, it is suggested
to make use of vectorization of the pandas DataFrame or Series or of the underlying numpy arrays, since vectorization
can be significantly faster than iterating over each index using a for loop.

This tutorial will cover some basic examples for the three Function types. To see more advanced examples, see the
example programs20 in the GitHub respository. The use_main_gui.py example program shows many different uses
of the three Function objects, and the creating_functions.py example program walks through the internals of how
launch_main_gui() (page 67) calls the Functions so that each individual step can be understood.

Note: For functions of all three Function types, it is a good idea to add **kwargs to the function input. In later
versions of mcetl, additional items may be passed to functions, but they will always be added as keyword arguments
(ie. passed as name=value). By adding **kwargs, any unwanted keyword arguments for functions will be ignored
and not cause issues when upgrading mcetl.

PreprocessFunctions

A PreprocessFunction (page 65) will perform its function on each data entry individually. Example usage of a
PreprocessFunction can be to split a single data entry into multiple entries, collect information on all data entries in
each sample in each dataset for usage later, or just simple processes that are easier to do per entry rather than when
each dataset is grouped together.

The function for a PreprocessFunction must take at least two arguments: the dataframe containing the data for the
entry, and a list of indices that tell which columns of the dataframe contain the data used by the function. The
function must return a list of dataframes after processing, even if only one dataframe is used within the function.

A simple function to split dataframes based on the segment number, and then remove the segment number column is
shown below.

19 https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
20 https://github.com/derb12/mcetl/tree/main/examples

10 Chapter 4. Tutorials

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://github.com/derb12/mcetl/tree/main/examples

mcetl Documentation, Release 0.4.1

import mcetl
import numpy as np

def split_segments(df, target_indices, **kwargs):
"""
Preprocess function that separates each entry based on the segment number.

Also removes the segment column after processing since it is not needed
in the final output.

Parameters

df : pandas.DataFrame

The dataframe of the entry.
target_indices : list(int)

The indices of the target columns.

Returns

output_dataframes : list(pandas.DataFrame)

The list of dataframes after splitting by segment number.

"""

segment_index = target_indices[0]
segment_col = df[df.columns[segment_index]].to_numpy()
mask = np.where(segment_col[:-1] != segment_col[1:])[0] + 1 # + 1 since mask

→˓loses one index

output_dataframes = np.array_split(df, mask)

for dataframe in output_dataframes:
dataframe.drop(segment_index, 1, inplace=True)

return output_dataframes

targets the 'segment' column from the imported data
segment_separator = mcetl.PreprocessFunction(

name='segment_separator', target_columns='segment',
function=split_segments, deleted_columns=['segment']

)

In addition, PreprocessFunctions can be used for procedures that are easier to perform on each data entry separately,
rather than when all of the data is collected together. For example, sorting each entry based on the values in one of its
columns.

def sort_columns(df, target_indices, **kwargs):
"""Sorts the dataframe based on the values of the target column."""
return [df.sort_values(target_indices[0])]

targets the 'diameter' column from the imported data
pore_preprocess = mcetl.PreprocessFunction('sort_data', 'diameter', sort_columns)

4.1. Main GUI 11

mcetl Documentation, Release 0.4.1

CalculationFunctions

A CalculationFunction (page 64) will perform its function on each merged dataset. Each merged dataset is
composed of all data entries for each sample concatenated together, resembling how the dataset will look when written
to an Excel sheet. This makes the functions more difficult to create since target columns are given as nested lists of
lists for each sample, but allows access to all data in a dataset, if required for complex calculations.

Each CalculationFunction can have two functions: one for performing the calculations on data for Excel and one for
performing calculations on data for Python. This way, the Excel calculations can create strings to match Excel-specific
functions, like using '=SUM(A1:A3)' to make the data dynamic within the Excel workbook, while the Python functions
can calculate the actual numerical data (eg. sum(data[0:2]) to match the previous Excel formula). If only a single,
numerical calculation is desired, regardless of whether the data is being output to Excel or Python, then only a single
function needs to be specified (an example of such a function is given below).

The functions for a CalculationFunction must take at least three arguments: the dataframe containing the data for the
dataset, a list of lists of integers that tell which columns in the dataframe contain the data used by the function, and a
list of lists of integers that tell which columns in the dataframe are used for the output of the function. Additionally,
two keyword arguments are passed to the function: excel_columns, which is a list of strings corresponding to
the columns in Excel used by the dataset (eg. ['A', 'B', 'C', 'D']) if doing Excel functions and is None if doing Python
functions, and first_row, which is an integer telling the first row in Excel that the data will begin on (3 by default,
since the first row is the sample name and the second is the column name). The functions must return a DataFrame
after processing, even if all changes to the input DataFrame were done in place.

A simple function that adds a column of offset data is shown below.

import mcetl
import numpy as np

def offset_data_excel(df, target_indices, calc_indices, excel_columns,
first_row, offset, **kwargs):

"""Creates a string that will add an offset to data in Excel."""

total_count = 0
for i, sample in enumerate(calc_indices):

for j, calc_col in enumerate(sample):
y = df[target_indices[0][i][j]]
y_col = excel_columns[target_indices[0][i][j]]
calc = [

f'= {y_col}{k + first_row} + {offset * total_count}' for k in
→˓range(len(y))

]
use np.where(~np.isnan(y)) so that the calculation works for unequally-

→˓sized
datasets
df[calc_col] = np.where(~np.isnan(y), calc, None)
total_count += 1

return df

def offset_data_python(df, target_indices, calc_indices, first_row, **kwargs):
"""Adds an offset to data."""

total_count = 0
for i, sample in enumerate(calc_indices):

for j, calc_col in enumerate(sample):
y = df[target_indices[0][i][j]]
df[calc_col] = y + (kwargs['offset'] * total_count)
total_count += 1

(continues on next page)

12 Chapter 4. Tutorials

mcetl Documentation, Release 0.4.1

(continued from previous page)

return df

targets the 'data' column from the imported data
offset = mcetl.CalculationFunction(

name='offset', target_columns='data', functions=(offset_data_excel, offset_data_
→˓python),

added_columns=1, function_kwargs={'offset': 10}
)

Alternatively, the two functions could be combined into one, and the calculation route could be decided by examining
the value of the excel_columns input, which is a list of strings if processing for Excel, and None when processing
for Python.

import mcetl
import numpy as np

def offset_data(df, target_indices, calc_indices, excel_columns,
first_row, offset, **kwargs):

"""Adds an offset to data."""

total_count = 0
for i, sample in enumerate(calc_indices):

for j, calc_col in enumerate(sample):
if excel_columns is not None: # do Excel calculations

y = df[target_indices[0][i][j]]
y_col = excel_columns[target_indices[0][i][j]]
calc = [

f'= {y_col}{k + first_row} + {offset * total_count}' for k in
→˓range(len(y))

]
df[calc_col] = np.where(~np.isnan(y), calc, None)

else: # do Python calculations
y = df[target_indices[0][i][j]]
df[calc_col] = y + (offset * total_count)

total_count += 1

return df

targets the 'data' column from the imported data
offset = mcetl.CalculationFunction(

name='offset', target_columns='data', functions=offset_data,
added_columns=1, function_kwargs={'offset': 10}

)

To modify the contents of an existing column, the input for added_columns for CalculationFunction should be a
string designating the target: either a variable from the imported data, or the name of a CalculationFunction.

import mcetl
import numpy as np

def normalize(df, target_indices, calc_indices, excel_columns, first_row, **kwargs):
"""Performs a min-max normalization to bound values between 0 and 1."""

for i, sample in enumerate(calc_indices):

(continues on next page)

4.1. Main GUI 13

mcetl Documentation, Release 0.4.1

(continued from previous page)

for j, calc_col in enumerate(sample):
if excel_columns is not None:

y = df[target_indices[0][i][j]]
y_col = excel_columns[target_indices[0][i][j]]
end = y.count() + 2
calc = [

(f'=({y_col}{k + first_row} - MIN({y_col}$3:{y_col}${end})) / '
f'(MAX({y_col}$3:{y_col}${end}) - MIN({y_col}$3:{y_col}${end}))')

for k in range(len(y))
]

df[calc_col] = np.where(~np.isnan(y), calc, None)

else:
y_col = df.columns[target_indices[0][i][j]]
min_y = df[y_col].min()
max_y = df[y_col].max()

df[calc_col] = (df[y_col] - min_y) / (max_y - min_y)

return df

def offset_normalized(df, target_indices, calc_indices, excel_columns,
offset, **kwargs):

"""Adds an offset to normalized data."""

total_count = 0
for i, sample in enumerate(calc_indices):

for j, calc_col in enumerate(sample):
y_col = df[target_indices[0][i][j]]
offset_amount = offset * total_count
if excel_columns is not None:

df[calc_col] = y_col + f' + {offset_amount}'
else:

df[calc_col] = y_col + offset_amount
total_count += 1

return df

targets the 'data' column from the imported data
normalize_func = mcetl.CalculationFunction(

name='normalize', target_columns='data',
functions=normalize, added_columns=1

)
targets the 'normalize' column from the the 'normalize' CalculationFunction
and also alters its contents
offset_func = mcetl.CalculationFunction(

name='offset', target_columns='normalize', functions=offset_normalized,
added_columns='normalize', function_kwargs={'offset': 10}

)

If the CalculationFunction does the same calculation, regardless of whether the data is going to Excel or for later
processing in Python, then a mutable object, like a list, can be used in function_kwargs to signify that the calculation
has been performed to prevent processing twice.

import mcetl
(continues on next page)

14 Chapter 4. Tutorials

mcetl Documentation, Release 0.4.1

(continued from previous page)

def offset_numerical(df, target_indices, calc_indices, excel_columns, **kwargs):
"""Adds a numerical offset to data."""

Add this section to prevent doing numerical calculations twice.
if excel_columns is None and kwargs['processed'][0]:

return df # return to prevent processing twice
elif excel_columns is not None:

kwargs['processed'][0] = True

Regular calculation section
offset = kwargs['offset']
total_count = 0
for i, sample in enumerate(calc_indices):

for j, calc_col in enumerate(sample):
df[calc_col] = df[target_indices[0][i][j]] + (offset * total_count)
total_count += 1

return df

targets the 'data' column from the imported data
numerical_offset = mcetl.CalculationFunction(

name='numerical offset', target_columns='data', functions=offset_numerical,
added_columns=1, function_kwargs={'offset': 10, 'processed': [False]}

)

SummaryFunctions

A SummaryFunction (page 65) is very similar to CalculationFunctions, performing its functions on each merged
dataset and requiring outputting a single DataFrame. However, SummaryFunctions differ from CalculationFunctions
in that their added columns are not within the data entries themselves. Instead, SummaryFunctions can either be a sam-
ple SummaryFunction (by using sample_summary=Truewhen creating the object), which is equivalent to append-
ing a data entry to each sample in each dataset, or a dataset SummaryFunction (by using sample_summary=False
when creating the object), which is equivalent to appending a sample to each dataset.

For example, consider calculating the elatic modulus from tensile tests. Each sample in the dataset will have multiple
measurements/entries, so a sample SummaryFunction could be used to calculate the average elastic modulus for each
sample, and a dataset SummaryFunction could be used to create a table listing the average elastic modulus for each
sample in the dataset for easy referencing.

import mcetl
import numpy as np
import pandas as pd
from scipy import optimize

def stress_model(strain, modulus):
"""
The linear estimate of the stress-strain curve using the strain and estimated

→˓modulus.

Parameters

strain : array-like

The array of experimental strain values, unitless (with cancelled
units, such as mm/mm).

(continues on next page)

4.1. Main GUI 15

mcetl Documentation, Release 0.4.1

(continued from previous page)

modulus : float
The estimated elastic modulus for the data, with units of GPa (Pa * 10**9).

Returns

array-like

The estimated stress data following the linear model, with units of Pa.

"""
return strain * modulus * 1e9

def tensile_calculation(df, target_indices, calc_indices, excel_columns, **kwargs):
"""Calculates the elastic modulus from the stress-strain curve for each entry."""

if excel_columns is None and kwargs['processed'][0]:
return df # return to prevent processing twice

elif excel_columns is not None:
kwargs['processed'][0] = True

num_columns = 2 # the number of calculation columns per entry
for i, sample in enumerate(calc_indices):

for j in range(len(sample) // num_columns):
strain_index = target_indices[0][i][j]
stress_index = target_indices[1][i][j]
nan_mask = (~np.isnan(df[strain_index])) & (~np.isnan(df[stress_index]))

to convert strain from % to unitless
strain = df[strain_index].to_numpy()[nan_mask] / 100
to convert stress from MPa to Pa

stress = df[stress_index].to_numpy()[nan_mask] * 1e6

only use data where stress varies linearly with respect to strain
linear_mask = (

(strain >= kwargs['lower_limit']) & (strain <= kwargs['upper_limit'])
)
initial_guess = 80 # initial guess of the elastic modulus, in GPa

modulus, covariance = optimize.curve_fit(
stress_model, strain[linear_mask], stress[linear_mask],
p0=[initial_guess]

)

df[sample[0 + (j * num_columns)]] = pd.Series(('Value', 'Standard Error'))
df[sample[1 + (j * num_columns)]] = pd.Series(

(modulus[0], np.sqrt(np.diag(covariance)[0]))
)

return df

def tensile_sample_summary(df, target_indices, calc_indices, excel_columns, **kwargs):
"""Summarizes the mechanical properties for each sample."""

if excel_columns is None and kwargs['processed'][0]:
return df # to prevent processing twice

(continues on next page)

16 Chapter 4. Tutorials

mcetl Documentation, Release 0.4.1

(continued from previous page)

num_cols = 2 # the number of calculation columns per entry from tensile_
→˓calculation

for i, sample in enumerate(calc_indices):
if not sample: # skip empty lists

continue

entries = []
for j in range(len(target_indices[0][i]) // num_cols):

entries.append(target_indices[0][i][j * num_cols:(j + 1) * num_cols])

df[sample[0]] = pd.Series(['Elastic Modulus (GPa)'])
df[sample[1]] = pd.Series([np.mean([df[entry[1]][0] for entry in entries])])
df[sample[2]] = pd.Series([np.std([df[entry[1]][0] for entry in entries])])

return df

def tensile_dataset_summary(df, target_indices, calc_indices, excel_columns,
→˓**kwargs):

"""Summarizes the mechanical properties for each dataset."""

if excel_columns is None and kwargs['processed'][0]:
return df # to prevent processing twice

the number of samples is the number of lists in calc_indices - 1
num_samples = len(calc_indices[:-1])

calc index is -1 since only the last dataframe is the dataset summary dataframe
df[calc_indices[-1][0]] = pd.Series(

[''] + [f'Sample {num + 1}' for num in range(num_samples)]
)
df[calc_indices[-1][1]] = pd.Series(

['Average'] + [df[indices[1]][0] for indices in target_indices[0][:-1]]
)
df[calc_indices[-1][2]] = pd.Series(

['Standard Deviation'] + [df[indices[2]][0] for indices in target_
→˓indices[0][:-1]]

)

return df

share the keyword arguments between all function objects
tensile_kwargs = {'lower_limit': 0.0015, 'upper_limit': 0.005, 'processed': [False]}

targets the 'data' column from the imported data
tensile_calc = mcetl.CalculationFunction(

name='tensile calc', target_columns=['strain', 'stress'],
functions=tensile_calculation, added_columns=2,
function_kwargs=tensile_kwargs

)
targets the columns from the the 'tensile calc' CalculationFunction
stress_sample_summary = mcetl.SummaryFunction(

name='tensile sample summary', target_columns=['tensile calc'],
functions=tensile_sample_summary, added_columns=3,
function_kwargs=tensile_kwargs, sample_summary=True

)
targets the columns from the the 'tensile sample summary' SummaryFunction

(continues on next page)

4.1. Main GUI 17

mcetl Documentation, Release 0.4.1

(continued from previous page)

stress_dataset_summary = mcetl.SummaryFunction(
name='tensile dataset summary', target_columns=['tensile sample summary'],
functions=tensile_dataset_summary, added_columns=3,
function_kwargs=tensile_kwargs, sample_summary=False

)

4.1.2 Creating DataSources

DataSource (page 54) objects are the main controlling object when using mcetl's main GUI.

DataSource Inputs

This section groups the inputs for DataSource by their usage, and explains possible inputs. The only necessary input
for a DataSource is its name, which is displayed in the GUI when selecting which DataSource to use.

Note that most inputs for DataSource will supply defaults for entering information into the GUIs, and can be overwrit-
ten when using the main GUI.

Sections

• Using Raw Data Files (page 18)

– File Searching (page 18)

– Importing Data (page 19)

• Processing Data (page 19)

– Functions (page 19)

– Column Names (page 19)

– Figure Appearance (page 20)

• Excel Output (page 20)

– Location within the Workbook (page 20)

– Spacing between Samples and Entries (page 20)

– Excel Plot Options (page 21)

– Specifying Excel Styles (page 21)

Using Raw Data Files

File Searching

The keyword file_type should be a string of the file extension of data files for the DataSource, such as 'csv' or 'txt'.
When searching for files, either manually or using a keyword search, the file extension is used to limit the number of
files to select.

The keyword num_files should be an interger telling how many files should be associated for each sample for the
DataSource. Only used if using a keyword search for files.

18 Chapter 4. Tutorials

mcetl Documentation, Release 0.4.1

Importing Data

column_numbers should be a list of integers telling which columns to import from the raw data file. The order of
columns follows the ordering within column_numbers, so [0, 1, 2] would import the first, second, and third columns
from the data file and keep their order, while [1, 2, 0] would still import the three columns but rearrange them so that
the first column is now the third column.

start_row and end_row should be integers telling which row in the raw data file should be the first and last row,
respectively. Note that end_row counts up from the bottom of the data file, so that end_row=0 would be the last row,
end_row=1 would be the second to last row, etc.

separator should be a string designating the separator used in the raw data file to separate columns. For example,
comma-separated files (csv) have ',' as the separator.

See the Importing Data section (page 26) of the tutorial for more in depth discussion on importing data.

Processing Data

Functions

The keyword functions should be a list or tuple of all the PreprocessFunctions, CalculationFunctions, and/or
SummaryFunctions that are needed for processing data for the DataSource. PreprocessFunctions will be performed
first, followed by CalculationFunctions and then SummaryFunctions. For each Function type, the order in which the
functions are performed is according to their ordering in the functions input.

The keyword unique_variables should be a list of strings designating the names to give to columns that con-
tain necessary data. The Function objects of the DataSource will then be able set their target_columns to those
columns. For example, in the previous tutorial section on creating Function objects, the example Function objects
had target_columns such as 'data' and 'diameter' from imported data. The 'data' and 'diameter' columns would be the
DataSource's unique_variables.

unique_variable_indices should be a list of intergers telling the indices of the columns within col-
umn_numbers belong to the unique_variables. For example, if column_numbers was [1, 2, 0], and Column 2 con-
tained the data for the unique variable, then unique_variable_indices would be [1] since Column 2 is at index 1 within
column_numbers.

Column Names

The keyword column_labels should be a list of strings, designating the default column labels for a single data
entry. The column labels should accomodate both the names of the imported data columns, and all of the columns
added by CalculationFunctions and SummaryFunctions.

To aid setting up the column_labels, a DataSource instance has the method
print_column_labels_template() (page 57), which will tell how many labels belong to imported
data, CalculationFunctions, sample-summary SummaryFunctions, and dataset-summary SummaryFunctions, and
give a template for the column_labels input.

The example below shows creating a DataSource for tensile testing, and uses the tensile_calc, stress_sample_summary,
stress_dataset_summary Function objects created in the previous tutorial section on creating Function objects.

import mcetl

tensile = mcetl.DataSource(
'Tensile Test',
functions=[tensile_calc, stress_sample_summary, stress_dataset_summary],

(continues on next page)

4.1. Main GUI 19

mcetl Documentation, Release 0.4.1

(continued from previous page)

unique_variables=['stress', 'strain'],
column_numbers=[4, 3, 0, 1, 2],
unique_variable_indices=[1, 0],
column_labels only currently has labels for the imported data, not the Functions
column_labels=['Strain (%)', 'Stress (MPa)', 'Time (s)', 'Extension (mm)', 'Load

→˓(kN)'],
)

tensile.print_column_labels_template()

The label_entries keyword can be set to True to append a number to the column labels of each entry in a sample
if there is more than one entry. For example, the column label 'data' would become 'data, 1', 'data, 2', etc.

Figure Appearance

The figure_rcparams keyword can be used to set the style of figures for fitting and plotting using Matplotlib's
rcParams21. The input should be a dictionary, like below:

example_rcparams = {
'font.serif': 'Times New Roman',
'font.family': 'serif',
'font.size': 12,
'xtick.direction': 'in',
'ytick.direction': 'in'

}

Excel Output

Location within the Workbook

Where data is placed within the output Excel file is determined by the excel_column_offset and
excel_row_offset keywords, which expect integers. By default, data is placed in the workbook starting at
cell A1. To change the starting cell to D8, for example, the excel_column_offset would be 3 and the excel_row_offset
would be 7.

Spacing between Samples and Entries

To place empty columns in the Excel workbook to help visually separate the various samples and entries, use
entry_separation and sample_separation. For example, to place one empty columns between each
entry in a sample, and two empty columns between each sample in a dataset, use entry_separation=1 and sam-
ple_separation=2, respectively.

21 https://matplotlib.org/tutorials/introductory/customizing.html#matplotlib-rcparams

20 Chapter 4. Tutorials

https://matplotlib.org/tutorials/introductory/customizing.html#matplotlib-rcparams
https://matplotlib.org/tutorials/introductory/customizing.html#matplotlib-rcparams

mcetl Documentation, Release 0.4.1

Excel Plot Options

The xy_plot_indices keyword should be a list with two integers, telling the indices of the columns to use for the
x- and y-axes when plotting each entry in Excel. Note that the the indices can refer to the columns from imported data
or from columns added by CalculationFunctions. For example, if three columns were imported, and two additional
columns were added by CalculationFunctions, then the total column indices would be [0, 1, 2, 3, 4] and plot indices
could be [0, 1] or [1, 4], etc.

Sample SummaryFunctions and dataset SummaryFunctions are also allowed to be plotted in Excel and will use the
xy_plot_indices.

Specifying Excel Styles

The styles used in the output Excel file are described by using the excel_writer_styles keyword. See the Excel
Styles section (page 30) of the tutorial for discussion on how to change the style of output Excel file.

Examples

The examples below show creating DataSources using some of the keyword inputs discussed above as well as the
Function objects created in the previous tutorial section on creating Function objects.

import mcetl

xrd = mcetl.DataSource(
'X-ray Diffraction',
column_labels=['2\u03B8 (\u00B0)', 'Intensity (Counts)', 'Offset Intensity (a.u.)

→˓'],
functions=[offset],
column_numbers=[1, 2],
unique_variables=['data'],
unique_variable_indices=[1],
start_row=1,
end_row=0,
separator=',',
xy_plot_indices=[0, 2],
file_type='csv',
num_files=1,
entry_separation=1,
sample_separation=2,

)

tensile = mcetl.DataSource(
'Tensile Test',
functions=[tensile_calc, stress_sample_summary, stress_dataset_summary],
column_numbers=[4, 3, 0, 1, 2],
unique_variables=['stress', 'strain'],
unique_variable_indices=[1, 0],
xy_plot_indices=[0, 1],
column_labels=[

'Strain (%)', 'Stress (MPa)', 'Time (s)', 'Extension (mm)', 'Load (kN)', #
→˓imported data

'', 'Elastic Modulus (GPa)', # CalculationFunction
'Property', 'Average', 'Standard Deviation', # sample SummaryFunction
'Sample', 'Elastic Modulus (GPa)', '' # dataset SummaryFunction

],
(continues on next page)

4.1. Main GUI 21

mcetl Documentation, Release 0.4.1

(continued from previous page)

start_row=6,
separator=',',
file_type='txt',
num_files=3,
entry_separation=2,
sample_separation=3

)

4.1.3 Using the Main GUI

Once all of the desired DataSource objects are created, simply group the DataSource objects together in a list or tuple,
and then call launch_main_gui() (page 67). For example, using the two DataSource objects created from the
last section gives:

import mcetl

all_datasources = (xrd, tensile)
mcetl.launch_main_gui(all_datasources)

The main GUI has the following steps:

• Main Menu (Choosing the DataSource and Processing Steps)

• File Selection

• Importing Data from Files

• Naming Samples & Columns

• Processing

Main Menu

In the main menu, the desired DataSource, the file selection method, and any processing steps are selected.

The possible processing steps are:

• Process the data using the Function objects for the selected DataSource

• Fit the data

• Plot the data

• Save the data to Excel

• Move files

Note that if the only selected processing step is moving files, then no data is actually imported.

22 Chapter 4. Tutorials

mcetl Documentation, Release 0.4.1

File Selection

Manually Selecting Files

Manual selection of files is easy and fast. To start, the number of datasets needs to be entered, and then the number of
samples per dataset. Each dataset will be one sheet when writing to Excel.

Next, a window will appear to select the files for each sample in each dataset (see the file selection window in the
gallery section (page 85) of the documentation). Simply press 'Add Files', and select all of the files for each sample.
To remove a file, just select it and press 'Del Files'.

Searching Using Keywords

Files can also be searched for using keywords. However, this is usually more difficult than manually selecting the files
and should only be used if searching for files within a deeply nested folder structure. Further explanation of keyword
searching for files is given when actually using within the main GUI, and will not be covered here since its usage is
discouraged.

Note: After selecting files, a file called "previous_files_{DataSource.name}.json" is locally saved, where {Data-
Source.name} is the name of the selected DataSource. This allows quickly bypassing file selection in case of repeated
processing of the same files.

To get the file path where the files are saved, simply do:

print(str(mcetl.main_gui.SAVE_FOLDER))

Importing Data from Files

See the Importing Data section (page 26) of the tutorial for the explanation of how mcetl imports raw data.

Note that numeric data after importing is downcast to the lowest possible representation (for example float is converted
to numpy.float32) to reduce memory usage. If this would be an issue, be sure to include appropriate Function objects
to convert to the desired dtype.

Naming Samples & Columns

The name of each sample for each dataset can be specified, as well as the column name for each column in the dataset.
Column names are generated using the column_names input for the selected DataSource. The gallery section
(page 85) of the documentation shows an example of the sample and column naming window.

Processing

Processing includes any processing steps selected in the main menu, including processing the data using the Function
objects for the selected DataSource, fitting the data, plotting the data, writing to Excel, or moving files. Each step
should be self-explanatory.

The output of the launch_main_gui function will be a single dictionary with the following keys and values:

'dataframes': list or None A list of lists of pandas.DataFrame, with each dataframe containing the data
imported from a raw data file; will be None if the function fails before importing data, or if the only
processing step taken was moving files.

4.1. Main GUI 23

mcetl Documentation, Release 0.4.1

'fit_results': list or None A nested list of lists of lmfit ModelResult objects, with each ModelResult
pertaining to the fitting of a data entry, each list of ModelResults containing all of the fits for a single
sample, and east list of lists pertaining to the data within one dataset. Will be None if fitting is not
done, or only partially filled if the fitting process ends early.

'plot_results': list or None A list of lists, with one entry per dataset. Each interior list is composed of a
matplotlib.Figure object and a dictionary of matplotlib.Axes objects. Will be None if plotting is not
done, or only partially filled if the plotting process ends early.

'writer': pandas.ExcelWriter or None The pandas ExcelWriter used to create the output Excel file; will
be None if the output results were not saved to Excel.

4.2 Fitting GUI

The fitting submodule of mcetl provides functions and GUIs for fitting data. mcetl uses the lmfit22 library for fitting
data using non-linear least-squares minimization. For in-depth discussion on the theory and available methods/models
for curve fitting, the lmfit23 documentation is highly recommended.

Please note that the fitting submodule is included in mcetl to allow a fairly basic curve fitting option. If other curve
fitting software is available, such as fityk24 or Origin25, the author highly recommends their usage instead of mcetl.

4.2.1 Basic Usage

To use the fitting GUI in mcetl, simply do:

from mcetl import fitting
fitting.launch_fitting_gui()

A window will then appear to select the data file(s) to be fit and the Excel file for saving the results. No other setup is
required.

Usage of the fitting GUI is fairly straightforward, and the GUI should notify the user if any issues occur and allow
correction without terminating the program.

After doing the fitting, the fit results and plots will be saved to Excel.

Note: Currently, mcetl only provides functions and a GUI for performing peak fitting. A later release of mcetl (v0.5
or v0.6) is slated to add general fitting routines, to allow fitting arbitrary models to data. Further, that release should
also add the option to save the fitting options from the GUI to a file so that the options can be reused for fitting other
data, similar to how the plotting GUI does it.

22 https://lmfit.github.io/lmfit-py/
23 https://lmfit.github.io/lmfit-py/
24 https://fityk.nieto.pl
25 https://originlab.com

24 Chapter 4. Tutorials

https://lmfit.github.io/lmfit-py/
https://lmfit.github.io/lmfit-py/
https://fityk.nieto.pl
https://originlab.com

mcetl Documentation, Release 0.4.1

4.2.2 Advanced Usage

To be added.

4.3 Plotting GUI

The plotting module of mcetl provides a GUI for plotting data. mcetl uses the Matplotlib26 library for plotting, which
allows for saving high quality images in several formats.

Please note that the plotting submodule is included in mcetl to allow a fairly basic plotting option. Further, its devel-
opment will be slower than the main GUI or the fitting submoduule since it requires covering many more options and
is not a priority of the author. If other plotting software is available, such as SciDAVis27, Veusz28, or Origin29, the
author highly recommends their usage instead of mcetl.

4.3.1 Summary of Features

The plotting GUI has the following features:

• plot data using line and/or scatter plots, and allow customization of the colors, style, and size of the mark-
ers/lines.

• specify complex layouts composed of multiple rows and/or columns of axes and inset axes

• add twin axes to plot multiple dependent responses (such as viscosity and density as functions of temperature)

• add secondary axes to plot the same data on different scales, using user-specified conversions (such as plotting
temperature in both Fahrenheit and Celsius)

• specify figure dimensions and dots per inch (dpi)

• add formatted annotations (text, arrows, and lines) anywhere on the figure

• allow specifying peak positions, which will optionally place markers and/or labels above each peak position on
each dataset.

In addition, changes to Matplotlib's rcParams30 can be specified, which allows additional control over the style and
formatting of the figures.

4.3.2 Basic Usage

To use the plotting GUI in mcetl, simply do:

from mcetl import plotting

add some changes to Matplotlib's rcparams
changes = {

'font.serif': 'Times New Roman',
'font.family': 'serif',
'font.size': 12,
'xtick.direction': 'in',

(continues on next page)

26 https://matplotlib.org
27 https://scidavis.sourceforge.net/
28 https://veusz.github.io
29 https://originlab.com
30 https://matplotlib.org/tutorials/introductory/customizing.html#matplotlib-rcparams

4.3. Plotting GUI 25

https://matplotlib.org
https://scidavis.sourceforge.net/
https://veusz.github.io
https://originlab.com
https://matplotlib.org/tutorials/introductory/customizing.html#matplotlib-rcparams

mcetl Documentation, Release 0.4.1

(continued from previous page)

'ytick.direction': 'in'
}
plotting.launch_plotting_gui(mpl_changes=changes)

Similar to fitting, a window will then appear to select the data file(s) to be plotted, and no other setup is required for
doing plotting.

When plotting, the image of the plots can be saved to all formats supported by Matplotlib31, including tiff, jpg, png,
svg, and pdf. If the Pillow32 library is installed, additional options are given to allow saving compressed files for some
formats, such as tiff, in order to reduce the file size.

4.3.3 Advanced Usage

To be added.

4.3.4 Saving/Reopening Plots

Using the GUI, the layout of the plots can be saved to apply to other figures later, which is referred to in the GUI as
saving the Figure Theme. The necessary data will be saved with the file extension ".figjson", which is just a json file.

Further, the data for the plots can be saved to a csv file so that the entire plot can be recreated.

To reopen a figure saved through mcetl, do:

plotting.load_previous_figure()

which will open a window to select the csv and (optionally) figjson files to use.

4.4 Importing Data

mcetl allows importing data from various sources such as text files, csv files, fixed-width files, and spreadsheet-
like files (xlsx, xls, xlsm, xlsb, ods, etc.). Note that the default installation of mcetl only supports importing from
spreadsheet-like files with either xlsx or xlsm file extensions (the file types supported by openpyxl33). To import data
from other spreadsheet-like files, the appropriate Python library must be installed. For example, to read xls files, the
xlrd34 library would need to be installed.

Figure 1 below shows the Data Import window. The meanings of the fields are as follows:

• Columns to import: which columns in the raw data file to import

• Start row: the first row to use from the raw data file

• End row: the last row to use from the raw data file

In addition, if using the Main GUI through mcetl.launch_main_gui() (page 67) and processing data, then a
section will be added to the bottom of the import window to select the column numbers for each unique variable ('x'
and 'y' in Figure 1) for the selected DataSource.

Figure 2 shows examples of different start rows, end rows, data columns, and separators to help show the meanings of
these terms. In Python, counting starts at 0, so if you wished to use the first row, for example, you would put 0 as the

31 https://matplotlib.org
32 https://python-pillow.org/
33 https://openpyxl.readthedocs.io/en/stable/
34 https://github.com/python-excel/xlrd

26 Chapter 4. Tutorials

https://matplotlib.org
https://python-pillow.org/
https://openpyxl.readthedocs.io/en/stable/
https://github.com/python-excel/xlrd

mcetl Documentation, Release 0.4.1

Fig. 1: Figure 1: Options for importing raw data. Columns for unique variables for a DataSource are also selected.

start row. For the end row, it is counting up from the bottom, so the bottom-most row is row 0, the row above it is row
1, etc.

For most file types the only other unique item that needs filled out is the separator. Common separators for files
are commas (,), semicolons (;), tabs (\t), and whitespace (\s+). Regular expressions35 can also be used for the
separator.

For fixed-width files, the widths of each column also need to be specified, as seen in Figure 3.

For importing data from existing spreadsheet-like files (xlsx, xls, etc.), there are additional options to choose (Figure
4). The assumption when importing data from a spreadsheet-like file is that the data has a common, repeating layout.
The options are as follows:

• Sheet to use: which sheet in the file to use

• First Column: the first column in the sheet to use

• Last Column: the last column in the sheet to use

• Number of columns per entry: how many columns are associated with one set of data in the selected sheet; the
total number data entries that will be extracted from the file will be equal to (Last Column + 1 – First Column)
/ Number of columns per entry. For example, if the First Column is column 0, the Last Column is column 11,
and there are 4 columns per entry, then the total number of sets of data is (11 + 1 – 0) / 4 = 3.

It is recommended to start from the top of the Data Import window, and work down because various fields are filled
out automatically when selecting the sheet to use, number of columns per dataset, etc.

At any time, the “Test Import” button can be pressed to look at how the imported data will look. When the data source

35 https://docs.python.org/3/howto/regex.html

4.4. Importing Data 27

https://docs.python.org/3/howto/regex.html

mcetl Documentation, Release 0.4.1

Fig. 2: Figure 2: Three raw data files with different import options.

Fig. 3: Figure 3: Importing raw data from fixed-width file.

28 Chapter 4. Tutorials

mcetl Documentation, Release 0.4.1

Fig. 4: Figure 4: Importing raw data from a spreadsheet-like file.

is a spreadsheet-like file and the columns per entry is less than the total columns, two windows will show up, with the
first window corresponding to the total set of data starting at the first column and ending at the last column, and the
second window showing the individual data entries. Any errors that would have occurred during data importing will
simply give a pop-up warning window when using “Test Import”, rather than causing any issues, so it is best to use
“Test Import” if you are unsure if the import options are correct.

4.5 Writing to Excel

mcetl gives the option to write results to Excel when using either mcetl.launch_main_gui() (page 67) or
fitting.launch_fitting_gui() (page 38) from mcetl.fitting (page 35). This section covers some
information that is good to know when writing to Excel.

4.5.1 Appending to Existing File

mcetl allows appending to existing Excel files, but it should be used with caution, namely for two reasons: high
memory usage, and potentially losing Excel objects.

Memory Usage

When appending to an existing Excel file, mcetl loads the Excel workbook using the Python library openpyxl36;
however, the conversion from Excel to Python can increase the necessary memory by more than an order of magnitude.
For example, an Excel file that is 10 MB on disk will require several hundred MB of RAM when opened in Python.
Users should to be aware of this fact, so that a MemoryError does not occur when loading existing files. If in doubt,
write to a new file using mcetl, and then copy the sheets to the desired file within Excel.

36 https://openpyxl.readthedocs.io/en/stable/

4.5. Writing to Excel 29

https://openpyxl.readthedocs.io/en/stable/

mcetl Documentation, Release 0.4.1

Losing Excel Objects

openpyxl can convert the majority of objects within an Excel file, such as cell values and styles, defined styles for
the workbook, and charts. If the existing Excel file is simply tabulated data and charts, then it should have no issues.
However, there are some Excel objects which openpyxl cannot read, such as shapes and inserted equations, so these
non-convertable objects will be lost when appending to a file.

If there is any doubt whether openpyxl can read an object within an Excel file, it is a good idea to create a copy of the
file before appending to it with mcetl to test whether all objects are transferred, or use mcetl to write to a new file and
then copy its contents to the existing file using Excel.

4.5.2 Excel Styles

When writing to Excel, using either mcetl.launch_main_gui() (page 67) (using a DataSource (page 54) to
set the style) or fitting.launch_fitting_gui() (page 38), the style of the cells in the Excel workbook can
be customized. The gallery section (page 85) of the documentation shows two spreadsheets showing the default styles
used for both the launch_main_gui function and the launch_fitting_gui function.

There are seven different styles that can be specified, each with an even and odd variant (eg. 'header_even' and
'header_odd'), allowing for fourteen total styles to be specified, making the Excel output visually distinct. The base
names for the seven styles are:

• 'header': The style used for the headers.

• 'subheader': The style used for the subheaders.

• 'columns': The style for all of the data columns.

• 'fitting_header': The style used for the headers when writing results from fitting.

• 'fitting_subheader':The style used for the subheaders when writing fit results.

• 'fitting_columns': The style for the data and parameter columns for fit results.

• 'fitting_descriptors': The style for the two columns specifying descriptions about the fit (whether it was success-
ful, the goodness of fit, etc.).

The styles with the 'fitting' prefix are only used if writing results from fitting to Excel.

The styles are specified using a dictionary containing the above base names with '_even' or '_odd' appended (eg.
'header_even') as keys, and either a nested dictionary or an openpyxl NamedStyle37 object as values.

Using Named Styles

To make the styles usable in the output Excel file, there are two options. The first is to use openpyxl NamedStyle38

objects in the dictionary. The second is to use a dictionary, and include the 'name' key in the dictionary to set the
NamedStyle's name.

Note: Once a Named Style is added to an Excel workbook, it cannot be overwritten using mcetl. That means that if
appending to an existing workbook and trying to set a Named Style to the name of an existing style in the workbook,
the format of the existing style will be used rather than the input style. To fix this, just delete or rename any styles that
need to be changed within the Excel workbook before writing more data using mcetl.

Some examples of valid inputs that create NamedStyles are shown below:
37 https://openpyxl.readthedocs.io/en/stable/api/openpyxl.styles.named_styles.html#openpyxl.styles.named_styles.NamedStyle
38 https://openpyxl.readthedocs.io/en/stable/api/openpyxl.styles.named_styles.html#openpyxl.styles.named_styles.NamedStyle

30 Chapter 4. Tutorials

https://openpyxl.readthedocs.io/en/stable/api/openpyxl.styles.named_styles.html#openpyxl.styles.named_styles.NamedStyle
https://openpyxl.readthedocs.io/en/stable/api/openpyxl.styles.named_styles.html#openpyxl.styles.named_styles.NamedStyle

mcetl Documentation, Release 0.4.1

from openpyxl.styles import (
Alignment, Border, Font, NamedStyle, PatternFill, Side

)

partial_styles = {
can use an openpyxl NamedStyle
'header_even': NamedStyle(

name='Even Header',
font=Font(size=12, bold=True),
fill=PatternFill(fill_type='solid', start_color='F9B381', end_color='F9B381'),
border=Border(bottom=Side(style='thin')),
alignment=Alignment(horizontal='center', vertical='center', wrap_text=True),
number_format='0.00'

),
or use a dictionary with a 'name' key
'header_odd': {

'name': 'Odd Header',
'font': Font(size=12, bold=True),
'fill': PatternFill(fill_type='solid', start_color='73A2DB', end_color='73A2DB

→˓'),
'border': Border(bottom=Side(style='thin')),
'alignment': Alignment(horizontal='center', vertical='center', wrap_

→˓text=True),
'number_format': '0.00'

},
can replace all openpyxl objects with dict to not even need to import openpyxl
'subheader_odd': {

'name': 'Odd Subheader',
'font': dict(size=12, bold=True),
'fill': dict(fill_type='solid', start_color='73A2DB', end_color='73A2DB'),
'border': dict(bottom=dict(style='thin')),
'alignment': dict(horizontal='center', vertical='center', wrap_text=True),
'number_format': '0.00'

},
can also reference already created NamedStyles
'subheader_even': 'Odd Subheader'

}

Using Anonymous Styles

Anonymous styles will properly format the cells in the output Excel file, but their names will not be available styles in
the Excel file. In addition, anonymous styles also have a much faster write time than Named Styles, taking ~ 50% less
time to write. So if processing speed is a concern, using anonymous styles is a good choice.

An easy way to create anonymous styles is to first create the NamedStyle, like above, and then replace NamedStyle
with dict and remove the 'name' key. Doing so with the styles from the previous section gives:

partial_styles = {
replace NamedStyle with dict and remove name=''
'header_even': dict(

font=Font(size=12, bold=True),
fill=PatternFill(fill_type='solid', start_color='F9B381', end_color='F9B381'),
border=Border(bottom=Side(style='thin')),
alignment=Alignment(horizontal='center', vertical='center', wrap_text=True),
number_format='0.00'

),

(continues on next page)

4.5. Writing to Excel 31

mcetl Documentation, Release 0.4.1

(continued from previous page)

remove the 'name' key
'header_odd': {

'font': Font(size=12, bold=True),
'fill': PatternFill(fill_type='solid', start_color='73A2DB', end_color='73A2DB

→˓'),
'border': Border(bottom=Side(style='thin')),
'alignment': Alignment(horizontal='center', vertical='center', wrap_

→˓text=True),
'number_format': '0.00'

},
remove 'name' and replace all openpyxl objects with dict to not even need to

→˓import openpyxl
'subheader_odd': {

'font': dict(size=12, bold=True),
'fill': dict(fill_type='solid', start_color='73A2DB', end_color='73A2DB'),
'border': dict(bottom=dict(style='thin')),
'alignment': dict(horizontal='center', vertical='center', wrap_text=True),
'number_format': '0.00'

}
}

Using Unformatted Styles

To make a style unformatted (use the Excel default format), simply set its value to either None or an empty dictionary.

both produces same, default style in the output Excel file
partial_styles = {'header_even': {}, 'header_odd': None}

To make all styles unformatted, do one of the following dictionary comprehensions:

from mcetl import DataSource

unformatted_styles = {style: {} for style in DataSource.excel_styles.keys()}
unformatted_styles2 = {style: None for style in DataSource.excel_styles.keys()}

Validate Styles

To ensure that the input style dictionary is valid, DataSource provides the test_excel_styles() (page 58) static
method, which will indicate the keys of all of the styles are not valid and their error tracebacks:

from mcetl import DataSource
from openpyxl.styles import Font, NamedStyle

good_styles = {
'header_even': NamedStyle(

name='header_even',
font=Font(size=12, bold=True),

),
'header_odd': {

'font': dict(size=12, bold=True),
}

}

(continues on next page)

32 Chapter 4. Tutorials

mcetl Documentation, Release 0.4.1

(continued from previous page)

bad_styles = {
'header_even': dict(

name='Header',
font=Font(size=12, bold=True),
number_format=1 # wrong since number_format must be a string or None

),
'header_odd': {

'font': dict(size='string'), # wrong since font size must be a float
}

}

DataSource.test_excel_styles(good_styles) # returns True
DataSource.test_excel_styles(bad_styles) # returns False

4.6 Example Data & Programs

mcetl comes with the ability to generate raw data to emulate several different materials characterization techniques.
Further, example programs are available to show basic usage of mcetl.

4.6.1 Generating Example Data

Files for example data from characterization techniques can be created using:

from mcetl import raw_data
raw_data.generate_raw_data()

Data produced by the generate_raw_data function covers the following characterization techniques:

• X-ray diffraction (XRD)

• Fourier-transform infrared spectroscopy (FTIR)

• Raman spectroscopy

• Thermogravimetric analysis (TGA)

• Differential scanning calorimetry (DSC)

• Rheometry

• Uniaxial tensile tests

• Pore size measurements

4.6.2 Example Programs

Example programs39 are available to show basic usage of mcetl. The examples include:

• Generating raw data

• Using the main GUI

• Using the fitting GUI

• Using the plotting GUI

39 https://github.com/derb12/mcetl/tree/main/examples

4.6. Example Data & Programs 33

https://github.com/derb12/mcetl/tree/main/examples

mcetl Documentation, Release 0.4.1

• Reopening a figure saved with the plotting GUI

The example program for using the main GUI contains all necessary inputs for processing the example raw data gen-
erated by the generate_raw_data function as described above and is an excellent resource for creating new DataSource
objects.

34 Chapter 4. Tutorials

CHAPTER

FIVE

API REFERENCE

Warning: mcetl is going to switch GUI backends in a later version (v0.5 or v0.6), so any api that is not referenced
in the Quick Start or Tutorial sections should be used with caution since it is liable to be changed or removed.

5.1 mcetl

mcetl provides user interfaces for processing, fitting, and plotting data.

mcetl is focused on easing the time required to process data files. It does this by allowing the user to define DataSource
objects which contains the information for reading files for that DataSource (such as what separator to use, which rows
and columns to use, labels for the columns, etc.), the calculations that will be performed on the data, and the options
for writing the data to Excel (formatting, placement in the worksheet, etc.).

In addition, mcetl provides fitting and plotting user interfaces that can be used without any prior setup.

Subpackages include:

mcetl.fitting (page 35) Contains functions that ease the fitting of data. The main entry is through
mcetl.fitting.launch_fitting_gui, but also contains useful functions without needing to launch a GUI.

mcetl.plotting (page 52) Contains functions that ease the plotting of data. The main entry
is through mcetl.plotting.launch_plotting_gui. Can also reopen a previouly saved figure using
mcetl.plotting.load_previous_figure.

@author: Donald Erb Created on Jul 15, 2020

5.1.1 Subpackages

mcetl.fitting

Contains functions that ease the fitting of data. The main entry is through mcetl.fitting.launch_fitting_gui, but also
contains useful functions without needing to launch a GUI.

@author: Donald Erb Created on Nov 15, 2020

35

mcetl Documentation, Release 0.4.1

Submodules

mcetl.fitting.fitting_gui

Provides a GUI to fit data using lmfit Models and save the results to Excel.

@author: Donald Erb Created on May 24, 2020

Notes

openpyxl is imported within fit_to_excel to reduce the import time of the module, and is only imported if saving fit
results to Excel.

Module Contents

Classes

ResultsPlot (page 36) Shows the results of a fit to allow user to decide if fit
was acceptable.

SimpleEmbeddedFigure (page 36) A window containing just an embedded figure and a
close button.

Functions

fit_dataframe (page 37) Creates a GUI to select data from a dataframe for fitting.
fit_to_excel (page 37) Outputs the relevant data from peak fitting to an Excel

file.
launch_fitting_gui (page 38) Convenience function to fit dataframe(s) and write their

results to Excel.

class mcetl.fitting.fitting_gui.ResultsPlot(fit_result)
Bases: mcetl.plot_utils.EmbeddedFigure (page 69)

Shows the results of a fit to allow user to decide if fit was acceptable.

Parameters fit_result (lmfit.ModelResult) -- The fit result to display.

Initialize self. See help(type(self)) for accurate signature.

event_loop(self)
Handles the event loop for the GUI.

Returns Returns True if the Continue button was pressed, otherwise False.

Return type bool40

class mcetl.fitting.fitting_gui.SimpleEmbeddedFigure(dataframe, gui_values)
Bases: mcetl.plot_utils.EmbeddedFigure (page 69)

A window containing just an embedded figure and a close button.

Parameters
40 https://docs.python.org/3/library/functions.html#bool

36 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool

mcetl Documentation, Release 0.4.1

• dataframe (pd.DataFrame) -- The dataframe that contains the x and y data.

• gui_values (dict41) -- A dictionary of values needed for plotting.

Initialize self. See help(type(self)) for accurate signature.

event_loop(self)
Handles the event loop for the GUI.

Notes

This function should typically be overwritten by a subclass, and should typically return any desired values
from the embedded figure.

This simple implementation makes the window visible, and closes the window as soon as anything in the
window is clicked.

mcetl.fitting.fitting_gui.fit_dataframe(dataframe, user_inputs=None)
Creates a GUI to select data from a dataframe for fitting.

Parameters

• dataframe (pd.DataFrame) -- A pandas dataframe containing the data to be fit.

• user_inputs (dict42, optional) -- Values to use as the default inputs in the GUI.

Returns

• fit_result (lmfit.model.ModelResult or None) -- A lmfit.ModelResult object, which gives
information for the fit done on the dataset. Is None if fitting was skipped.

• values_df (pd.DataFrame or None) -- The dataframe containing the x and y data, the y data
for every individual model, the summed y data of all models, and the background, if present.
Is None if fitting was skipped.

• params_df (pd.DataFrame or None) -- The dataframe containing the value and standard
error associated with all of the parameters in the fitting (eg. coefficients for the baseline,
areas and sigmas for each peak). Is None if fitting was skipped.

• descriptors_df (pd.DataFrame or None) -- The dataframe which contains some additional
information about the fitting. Currently has the adjusted r squared, reduced chi squared, the
Akaike information criteria, the Bayesian information criteria, and the minimization method
used for fitting. Is None if fitting was skipped.

• gui_values (dict or None) -- The values selected in the GUI for all of the various fields,
which can be used to reuse the values from a past interation. Is None if fitting was skipped.

mcetl.fitting.fitting_gui.fit_to_excel(values_dataframe, params_dataframe, de-
scriptors_dataframe, excel_writer_handler,
sheet_name=None, plot_excel=False)

Outputs the relevant data from peak fitting to an Excel file.

Parameters

• values_dataframe (pd.DataFrame) -- The dataframe containing the x and y data,
the y data for every individual model, the summed y data of all models, and the background,
if present.

41 https://docs.python.org/3/library/stdtypes.html#dict
42 https://docs.python.org/3/library/stdtypes.html#dict

5.1. mcetl 37

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

mcetl Documentation, Release 0.4.1

• params_dataframe (pd.DataFrame) -- The dataframe containing the value and stan-
dard error associated with all of the parameters in the fitting (eg. coefficients for the baseline,
areas and sigmas for each peak).

• descriptors_dataframe (pd.DataFrame) -- The dataframe which contains some
additional information about the fitting. Currently has the adjusted r squared, reduced chi
squared, the Akaike information criteria, the Bayesian information criteria, and the mini-
mization method used for fitting.

• excel_writer_handler (mcetl.excel_writer.ExcelWriterHandler
(page 59)) -- The ExcelWriterHandler that contains the pandas ExcelWriter object for
writing to Excel, and the styles for styling the cells in Excel.

• sheet_name (str43, optional) -- The Excel sheet name.

• plot_excel (bool44, optional) -- If True, will create a simple plot in Excel that
plots the raw x and y data, the data for each peak, the total of all peaks, and the background
if it is present.

mcetl.fitting.fitting_gui.launch_fitting_gui(dataframe=None, gui_values=None,
excel_writer=None, save_excel=True,
plot_excel=True, mpl_changes=None,
save_when_done=True, ex-
cel_formats=None)

Convenience function to fit dataframe(s) and write their results to Excel.

Parameters

• dataframe (pd.DataFrame or list/tuple, optional) -- The dataframe or
list/tuple of dataframes to fit.

• gui_values (dict45, optional) -- A dictionary containing the default gui values to
pass to fit_dataframe.

• excel_writer (pd.ExcelWriter, optional) -- The Excel writer used to save
the results to Excel. If input, the engine must be "openpyxl".

• save_excel (bool46, optional) -- If True (default), then the fit results will be saved
to an Excel file.

• plot_excel (bool47, optional) -- If True (default), then the fit results will be plot-
ted in the Excel file (if saving).

• mpl_changes (dict48, optional) -- A dictionary of changes to apply to matplotlib's
rcParams file, which affects how plots look.

• save_when_done (bool49, optional) -- If True (default), then the Excel file will be
saved once all dataframes are fit.

• excel_formats (dict50, optional) -- A dictionary of formats to use when writing
to Excel. The dictionary must have one of the following keys:

43 https://docs.python.org/3/library/stdtypes.html#str
44 https://docs.python.org/3/library/functions.html#bool
45 https://docs.python.org/3/library/stdtypes.html#dict
46 https://docs.python.org/3/library/functions.html#bool
47 https://docs.python.org/3/library/functions.html#bool
48 https://docs.python.org/3/library/stdtypes.html#dict
49 https://docs.python.org/3/library/functions.html#bool
50 https://docs.python.org/3/library/stdtypes.html#dict

38 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

mcetl Documentation, Release 0.4.1

'fitting_header_even', 'fitting_header_odd', 'fitting_subheader_even', 'fit-
ting_subheader_odd', 'fitting_columns_even', 'fitting_columns_odd', 'fit-
ting_descriptors_even', 'fitting_descriptors_odd'

The values for each key must be a dictionary, with keys in this internal dictionary represent-
ing keyword arguments for openpyxl's NamedStyle or openpyxl.styles.NamedStyle objects.
See mcetl.excel_writer.ExcelWriterHandler.styles as an example for the dictionary.

Returns

• fit_results (list(lmfit.models.ModelResult)) -- A list of lmfit.ModelResult objects, which
give information for each of the fits done on the dataframes.

• gui_values (dict, optional) -- A dictionary containing the default gui values to pass to
fit_dataframe.

• proceed (bool) -- True if the fitting gui was not exited from prematurely, otherwise, the
value is False. Useful when calling this function from an outside function that needs to
know whether to continue doing peak fitting.

mcetl.fitting.fitting_utils

Provides utility functions, classes, and constants for the fitting module.

Useful functions are put here in order to prevent circular importing within the other files.

@author : Donald Erb Created on Nov 18, 2020

Notes

The functions get_model_name, get_model_object, and get_gui_name are to be used, rather than referring to the
constants _TOTAL_MODELS and _GUI_MODELS because the implementation of these constants may change in
the future while the output of the functions can be kept constant.

Module Contents

Functions

get_gui_name (page 40) Returns the name used in GUIs for the input model, eg.
'GaussianModel' -> 'Gaussian'.

get_is_peak (page 40) Determines if the input model is registered as a peak
function.

get_model_name (page 40) Converts the model name used in GUIs to the model
class name.

get_model_object (page 40) Returns the model object given a model name, eg.
'Gaussian' -> lmfit.models.GaussianModel.

numerical_area (page 41) Computes the numerical area of a peak using the trape-
zoidal method.

numerical_extremum (page 41) Computes the numerical maximum or minimum for a
peak.

numerical_fwhm (page 41) Computes the numerical full-width-at-half-maximum of
a peak.

continues on next page

5.1. mcetl 39

mcetl Documentation, Release 0.4.1

Table 3 – continued from previous page
numerical_mode (page 42) Computes the numerical mode (x-value at which the ex-

tremum occurs) of a peak.
print_available_models (page 42) Prints out a dictionary of all models supported by mcetl.
r_squared (page 42) Calculates r^2 and adjusted r^2 for a fit.
r_squared_model_result (page 42) Calculates r^2 and adjusted r^2 for a fit, given an lm-

fit.ModelResult.
subtract_linear_background (page 42) Returns y-values after subtracting a linear background

constructed from points.

mcetl.fitting.fitting_utils.get_gui_name(model)
Returns the name used in GUIs for the input model, eg. 'GaussianModel' -> 'Gaussian'.

Parameters model (str51) -- The input model string.

Returns The model's name as it appears in GUIs.

Return type str52

Notes

This is a convenience function to be used so that the internals of how model names are specified can change
while code can always use this function.

mcetl.fitting.fitting_utils.get_is_peak(model)
Determines if the input model is registered as a peak function.

Parameters model (str53) -- The name of the model. Can either be the GUI name (eg. 'Gaussian')
or the class name (eg. 'GaussianModel').

Returns is_peak -- True if the input model is within _TOTAL_MODELS and _TO-
TAL_MODELS[model]['is_peak'] is True. If the model cannot be found, or if _TO-
TAL_MODELS[model]['is_peak'] is False, then returns False.

Return type bool54

mcetl.fitting.fitting_utils.get_model_name(model)
Converts the model name used in GUIs to the model class name.

For example, converts 'Gaussian' to 'GaussianModel' and 'Skewed Gaussian' to 'SkewedGaussianModel'.

Useful so that code can always refer to the original model name and not be affected if the name of the model
used in GUIs changes. Also ensures that user-input model names are correctly interpreted.

Parameters model (str55) -- The model name used within a GUI or input by a user.

Returns output -- The class name of the model, which can give other information by using _TO-
TAL_MODELS[output].

Return type str56

Raises KeyError: -- Raised if the input model name is not valid.

mcetl.fitting.fitting_utils.get_model_object(model)
Returns the model object given a model name, eg. 'Gaussian' -> lmfit.models.GaussianModel.

51 https://docs.python.org/3/library/stdtypes.html#str
52 https://docs.python.org/3/library/stdtypes.html#str
53 https://docs.python.org/3/library/stdtypes.html#str
54 https://docs.python.org/3/library/functions.html#bool
55 https://docs.python.org/3/library/stdtypes.html#str
56 https://docs.python.org/3/library/stdtypes.html#str

40 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

mcetl Documentation, Release 0.4.1

Parameters model (str57) -- The name of the model desired. Can either be the model class name,
such as 'GaussianModel', or the name used in GUIs, such as 'Gaussian.

Returns output -- The class corresponding to the input model name.

Return type lmfit.Model

mcetl.fitting.fitting_utils.numerical_area(x, y)
Computes the numerical area of a peak using the trapezoidal method.

Parameters

• x (array-like) -- The x-values for the peak model.

• y (array-like) -- The y-values for the peak model.

Returns The integrated area of the peak, using the trapezoidal method.

Return type float58

mcetl.fitting.fitting_utils.numerical_extremum(y)
Computes the numerical maximum or minimum for a peak.

Parameters y (array-like) -- The y-values for the peak model.

Returns extremum -- The extremum with the highest absolute value from the input y data. Assumes
the peak is negative if abs(min(y)) > abs(max(y)).

Return type float59

Notes

Use np.nanmin and np.nanmax instead of min and max in order to convert the output to a numpy dtype. This
way, all of the numerical calculations using the output of this function will work, even if y is a list or tuple.

mcetl.fitting.fitting_utils.numerical_fwhm(x, y)
Computes the numerical full-width-at-half-maximum of a peak.

Parameters

• x (array-like) -- The x-values for the peak model.

• y (array-like) -- The y-values for the peak model.

Returns The calculated full-width-at-half-max of the peak. If there are not at least two x-values at
which y = extremum_y / 2, then None is returned.

Return type float60 or None61

57 https://docs.python.org/3/library/stdtypes.html#str
58 https://docs.python.org/3/library/functions.html#float
59 https://docs.python.org/3/library/functions.html#float
60 https://docs.python.org/3/library/functions.html#float
61 https://docs.python.org/3/library/constants.html#None

5.1. mcetl 41

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

mcetl Documentation, Release 0.4.1

Notes

First finds the x-values where y - extremum_y / 2 changes signs, and then uses linear interpolation to approximate
the x-values at which y - extremum_y / 2 = 0

mcetl.fitting.fitting_utils.numerical_mode(x, y)
Computes the numerical mode (x-value at which the extremum occurs) of a peak.

Parameters

• x (array-like) -- The x-values for the peak model.

• y (array-like) -- The y-values for the peak model.

Returns The x-value at which the extremum in y occurs.

Return type float62

mcetl.fitting.fitting_utils.print_available_models()
Prints out a dictionary of all models supported by mcetl.

Also prints out details for each model, including its class, the name used when displaying in GUIs, its parame-
ters, and whether it is considered a peak function.

mcetl.fitting.fitting_utils.r_squared(y_data, y_fit, num_variables=1)
Calculates r^2 and adjusted r^2 for a fit.

Parameters

• y_data (array-like) -- The experimental y data.

• y_fit (array-like) -- The calculated y from fitting.

• num_variables (int63, optional) -- The number of variables used by the fitting
model.

Returns

• r_sq (float) -- The r squared value for the fitting.

• r_sq_adj (float) -- The adjusted r squared value for the fitting, which takes into account the
number of variables in the fitting model.

mcetl.fitting.fitting_utils.r_squared_model_result(fit_result)
Calculates r^2 and adjusted r^2 for a fit, given an lmfit.ModelResult.

Parameters fit_result (lmfit.ModelResult) -- The ModelResult object from a fit.

Returns The r^2 and adjusted r^2 values for the fitting.

Return type tuple64(float65, float66)

mcetl.fitting.fitting_utils.subtract_linear_background(x, y, background_points)
Returns y-values after subtracting a linear background constructed from points.

Parameters

• x (array-like) -- The x-values of the data.

• y (array-like) -- The y-values of the data.

62 https://docs.python.org/3/library/functions.html#float
63 https://docs.python.org/3/library/functions.html#int
64 https://docs.python.org/3/library/stdtypes.html#tuple
65 https://docs.python.org/3/library/functions.html#float
66 https://docs.python.org/3/library/functions.html#float

42 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

mcetl Documentation, Release 0.4.1

• background_points (list67(list68(float69, float70))) -- A list containing
the [x, y] values for each point representing the background.

Returns y_subtracted -- The input y-values, after subtracting the background.

Return type np.ndarray

Notes

Assumes the background is represented by lines connecting each of the specified background points.

mcetl.fitting.models

Provides additional models for fitting data.

@author : Donald Erb Created on Nov 29, 2020

Module Contents

Classes

BreitWignerFanoModel (page 43) A modified version of lmfit's BreitWignerModel.

Functions

breit_wigner_fano_alt (page 43) An alternate Breit-Wigner-Fano lineshape that uses
height rather than amplitude.

class mcetl.fitting.models.BreitWignerFanoModel(independent_vars=['x'], prefix='',
nan_policy='raise', **kwargs)

Bases: lmfit.model.Model71

A modified version of lmfit's BreitWignerModel.

Initializes with q=-3 rather than q=1, which gives a better peak. Also defines terms for fwhm, height, x_mode,
and maximum that were not included in lmfit's implementation, where x_mode is the x position at the maximum
y-value, and maximum is the maximum y-value. Further, the lmfit implementation uses amplitude as value for
bwf as abs(x) approaches infinity, which is different than for most other peaks where amplitude is defined as the
peak area.

Compared to lmfit's implementation, height = amplitude * q**2, and sigma (this model) = sigma (lmfit) / 2.

guess(self, data, x=None, negative=False, **kwargs)
Estimate initial model parameter values from data.

mcetl.fitting.models.breit_wigner_fano_alt(x, height=1.0, center=0.0, sigma=1.0, q=-
3.0)

67 https://docs.python.org/3/library/stdtypes.html#list
68 https://docs.python.org/3/library/stdtypes.html#list
69 https://docs.python.org/3/library/functions.html#float
70 https://docs.python.org/3/library/functions.html#float
71 https://lmfit.github.io/lmfit-py/model.html#lmfit.model.Model

5.1. mcetl 43

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://lmfit.github.io/lmfit-py/model.html#lmfit.model.Model

mcetl Documentation, Release 0.4.1

An alternate Breit-Wigner-Fano lineshape that uses height rather than amplitude.

breit_wigner_fano(x, height, center, sigma, q) = height * (1 + (x - center) / (q * sigma))**2 / (1 + ((x - center)
/ sigma)**2)

mcetl.fitting.peak_fitting

Functions for creating and fitting a model with peaks and a background and plotting the results.

Also contains two classes that create windows to allow selection of peak positions and background points.

@author: Donald Erb Created on Sep 14, 2019

Module Contents

Classes

BackgroundSelector (page 44) A window for selecting points to define the background
of data.

PeakSelector (page 45) A window for selecting peaks on a plot, along with peak
width and type.

Functions

find_peak_centers (page 46) Creates a list containing the peaks found and peaks ac-
cepted.

fit_peaks (page 47) Takes x,y data, finds the peaks, fits the peaks, and re-
turns all relevant information.

plot_confidence_intervals (page 49) Plot the data, the fit, and the fit +- n_sig * sigma confi-
dence intervals.

plot_fit_results (page 50) Plot the raw data, best fit, and residuals.
plot_individual_peaks (page 50) Plots each individual peak in the composite model and

the total model.
plot_peaks_for_model (page 51) Plot the peaks found or added, as well as the ones found

but rejected from the fitting.

class mcetl.fitting.peak_fitting.BackgroundSelector(x, y, click_list=None)
Bases: mcetl.plot_utils.EmbeddedFigure (page 69)

A window for selecting points to define the background of data.

Parameters

• x (array-like) -- The x-values to be plotted.

• y (array-like) -- The y-values to be plotted.

• click_list (list72(list73(float74, float75)), optional) -- A list of se-
72 https://docs.python.org/3/library/stdtypes.html#list
73 https://docs.python.org/3/library/stdtypes.html#list
74 https://docs.python.org/3/library/functions.html#float
75 https://docs.python.org/3/library/functions.html#float

44 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

mcetl Documentation, Release 0.4.1

lected points (lists of x, y values) on the plot.

axis_2
The secondary axis on the figure which has no events.

Type plt.Axes

Initialize self. See help(type(self)) for accurate signature.

event_loop(self)
Handles the event loop for the GUI.

Returns A list of the [x, y] values for the selected points on the figure.

Return type list76(list77(float78, float79))

class mcetl.fitting.peak_fitting.PeakSelector(x, y, click_list=None, ini-
tial_peak_width=1, sub-
tract_background=False, back-
ground_type='PolynomialModel', back-
ground_kwargs=None, bkg_min=- np.inf,
bkg_max=np.inf, default_model=None)

Bases: mcetl.plot_utils.EmbeddedFigure (page 69)

A window for selecting peaks on a plot, along with peak width and type.

Parameters

• x (array-like) -- The x-values to be plotted and fitted.

• y (array-like) -- The y-values to be plotted and fitted.

• click_list (list80, optional) -- A nested list, with each entry correspond-
ing to a peak. Each entry has the following layout: [[lmfit model, sigma func-
tion, aplitude function], [peak center, peak height, peak width]] where lmfit model is
something like 'GaussianModel'. The first entry in the list comes directly from the
mcetl.peak_fitting.peak_transformer function.

• initial_peak_width (int81 or float82) -- The initial peak width input in the
plot.

• subtract_background (bool83) -- If True, will subtract the background before show-
ing the plot.

• background_type (str84) -- String corresponding to a model in lmfit.models; used to
fit the background.

• background_kwargs (dict85) -- Any keyword arguments needed to initialize the back-
ground model

• bkg_min (float86 or int87) -- Minimum x value to use for initially fitting the back-
ground.

76 https://docs.python.org/3/library/stdtypes.html#list
77 https://docs.python.org/3/library/stdtypes.html#list
78 https://docs.python.org/3/library/functions.html#float
79 https://docs.python.org/3/library/functions.html#float
80 https://docs.python.org/3/library/stdtypes.html#list
81 https://docs.python.org/3/library/functions.html#int
82 https://docs.python.org/3/library/functions.html#float
83 https://docs.python.org/3/library/functions.html#bool
84 https://docs.python.org/3/library/stdtypes.html#str
85 https://docs.python.org/3/library/stdtypes.html#dict
86 https://docs.python.org/3/library/functions.html#float
87 https://docs.python.org/3/library/functions.html#int

5.1. mcetl 45

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

mcetl Documentation, Release 0.4.1

• bkg_max (float88 or int89) -- Maximum x value to use for initially fitting the back-
ground.

• default_model (str90) -- The initial model to have selected on the plot, corresponds
to a model in lmfit.models.

background
The y-values for the background function.

Type array-like

Initialize self. See help(type(self)) for accurate signature.

event_loop(self)
Handles the event loop for the GUI.

Returns A nested list, with each entry corresponding to a peak. Each entry has the following
layout: [model, peak center, peak height, peak width] where model is something like 'Gaus-
sian'. The first entry in the list comes directly from the mcetl.peak_fitting.peak_transformer
function.

Return type list91

mcetl.fitting.peak_fitting.find_peak_centers(x, y, additional_peaks=None, height=None,
prominence=np.inf, x_min=- np.inf,
x_max=np.inf)

Creates a list containing the peaks found and peaks accepted.

Parameters

• y (x,) -- x and y values for the fitting.

• additional_peaks (list92, optional) -- Peak centers that are input by the user
and automatically accepted as peaks if within x_min and x_max.

• height (int93 or float94, optional) -- Height that a peak must have for it to be
considered a peak by scipy's find_peaks.

• prominence (int95 or float96) -- Prominence that a peak must have for it to be
considered a peak by scipy's find_peaks.

• x_min (int97 or float98) -- Minimum x value used in fitting the data.

• x_max (int99 or float100) -- Maximum x value used in fitting the data.

Returns

• peaks_found (list) -- A list of all the peak centers found.

• peaks_accepted (list) -- A list of peak centers that were accepted because they were within
x_min and x_max.

88 https://docs.python.org/3/library/functions.html#float
89 https://docs.python.org/3/library/functions.html#int
90 https://docs.python.org/3/library/stdtypes.html#str
91 https://docs.python.org/3/library/stdtypes.html#list
92 https://docs.python.org/3/library/stdtypes.html#list
93 https://docs.python.org/3/library/functions.html#int
94 https://docs.python.org/3/library/functions.html#float
95 https://docs.python.org/3/library/functions.html#int
96 https://docs.python.org/3/library/functions.html#float
97 https://docs.python.org/3/library/functions.html#int
98 https://docs.python.org/3/library/functions.html#float
99 https://docs.python.org/3/library/functions.html#int

100 https://docs.python.org/3/library/functions.html#float

46 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

mcetl Documentation, Release 0.4.1

Notes

Uses scipy's signal.find_peaks to find peaks matching the specifications, and adds those peaks to a list of addi-
tionally specified peaks.

mcetl.fitting.peak_fitting.fit_peaks(x, y, height=None, prominence=np.inf,
center_offset=1.0, peak_width=1.0, de-
fault_model='PseudoVoigtModel', sub-
tract_background=False, bkg_min=-
np.inf, bkg_max=np.inf, min_sigma=0.0,
max_sigma=np.inf, min_method='least_squares',
x_min=- np.inf, x_max=np.inf, addi-
tional_peaks=None, model_list=None, back-
ground_type='PolynomialModel', back-
ground_kwargs=None, fit_kws=None,
vary_voigt=False, fit_residuals=False,
num_resid_fits=5, min_resid=0.05, debug=False,
peak_heights=None)

Takes x,y data, finds the peaks, fits the peaks, and returns all relevant information.

Parameters

• y (x,) -- x and y values for the fitting.

• height (int101 or float102) -- Height that a peak must have for it to be considered a
peak by scipy's find_peaks.

• prominence (int103 or float104) -- Prominence that a peak must have for it to be
considered a peak by scipy's find_peaks.

• center_offset (int105 or float106) -- Value that determines the min and max pa-
rameters for the center of each peak. min = center - center_offset, max = center + cen-
ter_offset.

• peak_width (int107 or float108) -- A guess at the full-width-half-max of the peaks.
When first estimating the peak parameters, only the data from x - peak_width / 2 to x +
peak_width / 2 is used to fit the peak.

• default_model (str109) -- Model used if the model_list is None or does not have
enough values for the number of peaks found. Must correspond to one of the built-in models
in lmfit.models.

• subtract_background (bool110) -- If True, it will fit the background with the model
in background_type.

• bkg_min (int111 or float112) -- Minimum x value to use for initially fitting the back-
ground.

101 https://docs.python.org/3/library/functions.html#int
102 https://docs.python.org/3/library/functions.html#float
103 https://docs.python.org/3/library/functions.html#int
104 https://docs.python.org/3/library/functions.html#float
105 https://docs.python.org/3/library/functions.html#int
106 https://docs.python.org/3/library/functions.html#float
107 https://docs.python.org/3/library/functions.html#int
108 https://docs.python.org/3/library/functions.html#float
109 https://docs.python.org/3/library/stdtypes.html#str
110 https://docs.python.org/3/library/functions.html#bool
111 https://docs.python.org/3/library/functions.html#int
112 https://docs.python.org/3/library/functions.html#float

5.1. mcetl 47

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

mcetl Documentation, Release 0.4.1

• bkg_max (int113 or float114) -- Maximum x value to use for initially fitting the back-
ground.

• min_sigma (int115 or float116) -- Minimum value for the sigma for each peak; typ-
ically better to not set to any value other than 0.

• max_sigma (int117 or float118) -- maximum value for the sigma for each peak; typ-
ically better to not set to any value other than infinity.

• min_method (str119) -- Minimization method used for fitting.

• x_min (int120 or float121) -- Minimum x value used in fitting the data.

• x_max (int122 or float123) -- Maximum x value used in fitting the data.

• additional_peaks (list124) -- Peak centers that are input by the user and automati-
cally accepted as peaks.

• model_list (list125) -- List of strings, with each string corresponding to one of the
models in lmfit.models.

• background_type (str126) -- String corresponding to a model in lmfit.models; used to
fit the background.

• background_kwargs (dict127, optional) -- Any keyword arguments needed to
initialize the background model.

• fit_kws (dict128) -- Keywords to be passed on to the minimizer.

• vary_voigt (bool129) -- If True, will allow the gamma parameter in the Voigt model to
be varied as an additional variable; if False, gamma will be set equal to sigma.

• fit_residuals (bool130) -- If True, it will attempt to fit the residuals after the first
fitting to find hidden peaks, add them to the model, and fit the data again.

• num_resid_fits (int131) -- Maximum number of times the program will loop to fit the
residuals.

• min_resid (int132 or float133) -- used as the prominence when finding peaks in the
residuals, in which the prominence is set to min_resid * (y_max - y_min).

• debug (bool134) -- If True, will create plots at various portions of the code showing the
peak initialization, initial fits and backgrounds, and residuals.

113 https://docs.python.org/3/library/functions.html#int
114 https://docs.python.org/3/library/functions.html#float
115 https://docs.python.org/3/library/functions.html#int
116 https://docs.python.org/3/library/functions.html#float
117 https://docs.python.org/3/library/functions.html#int
118 https://docs.python.org/3/library/functions.html#float
119 https://docs.python.org/3/library/stdtypes.html#str
120 https://docs.python.org/3/library/functions.html#int
121 https://docs.python.org/3/library/functions.html#float
122 https://docs.python.org/3/library/functions.html#int
123 https://docs.python.org/3/library/functions.html#float
124 https://docs.python.org/3/library/stdtypes.html#list
125 https://docs.python.org/3/library/stdtypes.html#list
126 https://docs.python.org/3/library/stdtypes.html#str
127 https://docs.python.org/3/library/stdtypes.html#dict
128 https://docs.python.org/3/library/stdtypes.html#dict
129 https://docs.python.org/3/library/functions.html#bool
130 https://docs.python.org/3/library/functions.html#bool
131 https://docs.python.org/3/library/functions.html#int
132 https://docs.python.org/3/library/functions.html#int
133 https://docs.python.org/3/library/functions.html#float
134 https://docs.python.org/3/library/functions.html#bool

48 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

mcetl Documentation, Release 0.4.1

• peak_heights (list135) -- A list of peak heights.

Returns

output -- A dictionary of lists. For most lists, each entry corresponds to the results of a peak
fitting. The dictionary has the following keys (in this order if unpacked into a list):

'resid_peaks_found': All peak centers found during fitting of the residuals. Each list
entry corresponds to a separate fitting.

'resid_peaks_accepted': Peak centers found during fitting of the residuals which were
accepted as true peak centers. Each list entry corresponds to a separate fitting.

'peaks_found': All peak centers found during the initial peak fitting of the original
data.

'peaks_accepted': Peaks centers found during the initial peak fitting of the original
data which were accepted as true peak centers

'initial_fits': List of initial fits. Each list entry corresponds to a separate fitting.

'fit_results': List of lmfit's ModelResult objects, which contain the majority of infor-
mation needed. Each list entry corresponds to a separate fitting.

'individual_peaks': Nested list of y-data values for each peak. Each list entry corre-
sponds to a separate fitting.

'best_values: Nested list of best fit parameters (such as amplitude, fwhm, etc.) for each
fitting. Each list entry corresponds to a separate fitting.

Return type dict136

Notes

Uses several of the functions within this module to directly take (x,y) data and do peak fitting. All relevant data
is returned from this function, so it has quite a dense input and output, but it is well worth it!

For the minimization method (min_method), the 'least_squares' method gives fast performance compared to
most other methods while still having good convergence. The 'leastsq' is also very good, and seems less succep-
tible to getting caught in local minima compared to 'least_squares', but takes longer to evaluate. A best practice
could be to use 'least_squares' during initial testing and then using 'leastsq' for final calculations.

Global optimizers do not seem to work on complicated models (or rather I cannot get them to work), so using
the local optimizers 'least_squares' or 'leastsq' and adjusting the inputs will have to suffice.

Most relevant data is contained within output['fit_results'], such as the parameters for each peak, as well as all
the error associated with the fitting.

Within this function: params == parameters for all of the peaks bkg_params == parameters for the background
composite_params == parameters for peaks + background

model == CompositeModel object for all of the peaks background == Model object for the background
composite_model == CompositeModel object for the peaks + background

peaks_accepted are not necessarily the peak centers after fitting, just the peak centers that were found. These
values can be used for understanding the peak selection process.

mcetl.fitting.peak_fitting.plot_confidence_intervals(fit_result, n_sig=3, re-
turn_figure=False)

Plot the data, the fit, and the fit +- n_sig * sigma confidence intervals.

135 https://docs.python.org/3/library/stdtypes.html#list
136 https://docs.python.org/3/library/stdtypes.html#dict

5.1. mcetl 49

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

mcetl Documentation, Release 0.4.1

Parameters

• fit_result (lmfit.ModelResult) -- The ModelResult object for the fitting.

• n_sig (float137, optional) -- The multiple of the standard error to use as the plotted
error. The default is 3.

• return_figure (bool138, optional) -- If True, will return the created figure; oth-
erwise, it will display the figure using plt.show(block=False) (default).

Returns If return_figure is True, the figure is returned; otherwise, None is returned.

Return type plt.Figure or None139

Notes

This function assumes that the independant variable in the fit_result was labeled 'x', as is standard for all built-in
lmfit models.

mcetl.fitting.peak_fitting.plot_fit_results(fit_result, label_rsq=False,
plot_initial=False, return_figure=False)

Plot the raw data, best fit, and residuals.

Parameters

• fit_result (lmfit.ModelResult or list140(lmfit.ModelResult)) -- A
ModelResult object from lmfit; can be a list of ModelResults, in which case, the initial fit
will use fit_result[0], and the best fit will use fit_result[-1].

• label_rsq (bool141, optional) -- If True, will put a label with the adjusted r squared
value of the fitting.

• plot_initial (bool142, optional) -- If True, will plot the initial fitting as well as
the best fit.

• return_figure (bool143, optional) -- If True, will return the created figure; oth-
erwise, it will display the figure using plt.show(block=False) (default).

Returns If return_figure is True, the figure is returned; otherwise, None is returned.

Return type plt.Figure or None144

Notes

This function assumes that the independant variable in the fit_result was labeled 'x', as is standard for all built-in
lmfit models.

mcetl.fitting.peak_fitting.plot_individual_peaks(fit_result, individual_peaks,
background_subtracted=False,
plot_subtract_background=False,
plot_separate_background=False,
plot_w_background=False, re-
turn_figures=False)

137 https://docs.python.org/3/library/functions.html#float
138 https://docs.python.org/3/library/functions.html#bool
139 https://docs.python.org/3/library/constants.html#None
140 https://docs.python.org/3/library/stdtypes.html#list
141 https://docs.python.org/3/library/functions.html#bool
142 https://docs.python.org/3/library/functions.html#bool
143 https://docs.python.org/3/library/functions.html#bool
144 https://docs.python.org/3/library/constants.html#None

50 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

mcetl Documentation, Release 0.4.1

Plots each individual peak in the composite model and the total model.

Parameters

• fit_result (lmfit.ModelResult) -- The ModelResult object from the fitting.

• individual_peaks (dict145) -- A dictionary with keys corresponding to the model
prefixes in the fitting, and their values corresponding to their y values.

• background_subtracted (bool146) -- Whether or not the background was subtracted
in the fitting.

• plot_subtract_background (bool147) -- If True, subtracts the background from the
raw data as well as all the peaks, so everything is nearly flat.

• plot_separate_background (bool148) -- If True, subtracts the background from
just the individual peaks, while also showing the raw data with the composite model and
background.

• plot_w_background (bool149) -- If True, has the background added to all peaks, i.e.
it shows exactly how the composite model fits the raw data.

• return_figures (bool150, optional) -- If True, will return the created figures;
otherwise, it will display the figures using plt.show(block=False) (default).

Returns If return_figures is True, the list of created figures is returned. Otherwise, None is returned.

Return type list151(plt.Figure) or None152

Notes

This function assumes that the independant variable in the fit_result was labeled 'x', as is standard for all built-in
lmfit models.

mcetl.fitting.peak_fitting.plot_peaks_for_model(x, y, x_min, x_max, peaks_found,
peaks_accepted, additional_peaks)

Plot the peaks found or added, as well as the ones found but rejected from the fitting.

Parameters

• x (array-like) -- x data used in the fitting.

• y (array-like) -- y data used in the fitting.

• x_min (float153 or int154) -- Minimum x values used for the fitting procedure.

• x_max (float155 or int156) -- Maximum x values used for the fitting procedure.

• peaks_found (list157) -- A list of x values corresponding to all peaks found throughout
the peak fitting and peak finding process, as well as those input by the user.

145 https://docs.python.org/3/library/stdtypes.html#dict
146 https://docs.python.org/3/library/functions.html#bool
147 https://docs.python.org/3/library/functions.html#bool
148 https://docs.python.org/3/library/functions.html#bool
149 https://docs.python.org/3/library/functions.html#bool
150 https://docs.python.org/3/library/functions.html#bool
151 https://docs.python.org/3/library/stdtypes.html#list
152 https://docs.python.org/3/library/constants.html#None
153 https://docs.python.org/3/library/functions.html#float
154 https://docs.python.org/3/library/functions.html#int
155 https://docs.python.org/3/library/functions.html#float
156 https://docs.python.org/3/library/functions.html#int
157 https://docs.python.org/3/library/stdtypes.html#list

5.1. mcetl 51

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

mcetl Documentation, Release 0.4.1

• peaks_accepted (list158) -- A list of x values corresponding to peaks found through-
out the peak fitting and peak finding process that were accepted into the model.

• additional_peaks (list159) -- A list of peak centers that were input by the user.

mcetl.plotting

Contains functions that ease the plotting of data. The main entry is through mcetl.plotting.launch_plotting_gui. Can
also reopen a previouly saved figure using mcetl.plotting.load_previous_figure.

@author: Donald Erb Created on Nov 15, 2020

Submodules

mcetl.plotting.plotting_gui

GUIs to plot data using various plot layouts and save the resulting figures.

@author: Donald Erb Created on Jun 28, 2020

mcetl.plotting.plotting_gui.COLORS
A tuple with values that are used in GUIs to select the color to plot with in matplotlib. The default is ('None',
'Black', 'Blue', 'Red', Green', 'Chocolate', 'Magenta', 'Cyan', 'Orange', 'Coral', 'Dodgerblue').

Type tuple160(str161, ..)

mcetl.plotting.plotting_gui.LINE_MAPPING
A dictionary with keys that are displayed in GUIs, and values that are used by matplotlib to specify the line
style. The default is {

'None': '', 'Solid': '-', 'Dashed': '--', 'Dash-Dot': '-.', 'Dot': ':', 'Dash-Dot-Dot': (0, [0.75 *
plt.rcParams['lines.dashdot_pattern'][0]] +

plt.rcParams['lines.dashdot_pattern'][1:] + plt.rcParams['lines.dashdot_pattern'][-2:])

}

Type dict162

mcetl.plotting.plotting_gui.MARKERS
A tuple of strings for the default markers to use for plotting. The default is (' None', 'o Circle', 's Square', '^
Triangle-Up', 'D Diamond', 'v Triangle-Down', 'p Pentagon', '< Triangle-Left', '> Triangle-Right', '* Star').

Type tuple163(str164, ..)

mcetl.plotting.plotting_gui.TIGHT_LAYOUT_PAD
The padding placed between the edge of the figure and the edge of the canvas; used by matplotlib's tight_layout
option. Default is 0.3.

Type float165

158 https://docs.python.org/3/library/stdtypes.html#list
159 https://docs.python.org/3/library/stdtypes.html#list
160 https://docs.python.org/3/library/stdtypes.html#tuple
161 https://docs.python.org/3/library/stdtypes.html#str
162 https://docs.python.org/3/library/stdtypes.html#dict
163 https://docs.python.org/3/library/stdtypes.html#tuple
164 https://docs.python.org/3/library/stdtypes.html#str
165 https://docs.python.org/3/library/functions.html#float

52 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

mcetl Documentation, Release 0.4.1

mcetl.plotting.plotting_gui.TIGHT_LAYOUT_H_PAD
The height (vertical) padding between axes in a figure; used by matplotlib's tight_layout option. Default is 0.6.

Type float166

mcetl.plotting.plotting_gui.TIGHT_LAYOUT_W_PAD
The width (horizontal) padding between axes in a figure; used by matplotlib's tight_layout option. Default is
0.6.

Type float167

Module Contents

Functions

launch_plotting_gui (page 53) Convenience function to plot lists of dataframes with
matplotlib.

load_previous_figure (page 53) Load the options and the data to recreate a figure.

mcetl.plotting.plotting_gui.launch_plotting_gui(dataframes=None,
mpl_changes=None, in-
put_fig_kwargs=None, in-
put_axes=None, input_values=None)

Convenience function to plot lists of dataframes with matplotlib.

Wraps the plotting in a context manager that applies the changes to the matplotlib rcParams.

Parameters

• dataframes (list168(list169(pd.DataFrame))) -- A nested list of lists of pandas
DataFrames. Each list of DataFrames will create one figure.

• mpl_changes (dict170) -- Changes to matplotlib's rcParams file to alter the figure.

• input_fig_kwargs (dict171, optional) -- The fig_kwargs from a previous ses-
sion. Only used if reloading a figure.

• input_axes (dict172, optional) -- A dictionary of plt.Axes objects from a reloaded
session.

• input_values (dict173, optional) -- The values needed to recreate the previous
gui window from a reloaded figure.

Returns figures -- A nested list of lists, with each entry containing the matplotlib Figure, and a
dictionary containing the Axes.

Return type list174(list175(plt.Figure, dict176(str177, plt.Axes)))

166 https://docs.python.org/3/library/functions.html#float
167 https://docs.python.org/3/library/functions.html#float
168 https://docs.python.org/3/library/stdtypes.html#list
169 https://docs.python.org/3/library/stdtypes.html#list
170 https://docs.python.org/3/library/stdtypes.html#dict
171 https://docs.python.org/3/library/stdtypes.html#dict
172 https://docs.python.org/3/library/stdtypes.html#dict
173 https://docs.python.org/3/library/stdtypes.html#dict
174 https://docs.python.org/3/library/stdtypes.html#list
175 https://docs.python.org/3/library/stdtypes.html#list
176 https://docs.python.org/3/library/stdtypes.html#dict
177 https://docs.python.org/3/library/stdtypes.html#str

5.1. mcetl 53

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

mcetl Documentation, Release 0.4.1

mcetl.plotting.plotting_gui.load_previous_figure(filename=None,
new_rc_changes=None)

Load the options and the data to recreate a figure.

Parameters

• filename (str178, optional) -- The filepath string to the csv data file to be opened.

• new_rc_changes (dict179, optional) -- New changes to matplotlib's rcParams file
to alter the saved figure.

Returns figures -- A list of figures (with len=1) using the loaded data. If no file is selected, then
figures = None.

Return type list180 or None181

Notes

Will load the data from the csv file specified by filename. If there also exists a .figjson file with the same name
as the csv file, it will be loaded to set the figure layout. Otherwise, a new figure is created.

5.1.2 Submodules

mcetl.data_source

The DataSource class contains all needed information for importing, processing, and saving data.

@author: Donald Erb Created on Jul 31, 2020

Module Contents

Classes

DataSource (page 54) Used to give default settings for importing data and var-
ious functions based on the source.

class mcetl.data_source.DataSource(name, *, functions=None, column_labels=None,
column_numbers=None, start_row=0, end_row=0,
separator=None, file_type=None, num_files=1,
unique_variables=None, unique_variable_indices=None,
xy_plot_indices=None, figure_rcparams=None, ex-
cel_writer_styles=None, excel_row_offset=0, ex-
cel_column_offset=0, entry_separation=0, sam-
ple_separation=0, label_entries=True)

Used to give default settings for importing data and various functions based on the source.

Parameters

• name (str182) -- The name of the DataSource. Used when displaying the DataSource in a
GUI.

178 https://docs.python.org/3/library/stdtypes.html#str
179 https://docs.python.org/3/library/stdtypes.html#dict
180 https://docs.python.org/3/library/stdtypes.html#list
181 https://docs.python.org/3/library/constants.html#None
182 https://docs.python.org/3/library/stdtypes.html#str

54 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

mcetl Documentation, Release 0.4.1

• functions (list183 or tuple184, optional) -- A list or tuple of various Func-
tion objects (CalculationFunction (page 64) or PreprocessFunction (page 65)
or SummaryFunction (page 65)) that will be used to process data for the DataSource.
The order the Functions are performed in is as follows: PreprocessFunctions, Calculation-
Functions, SummaryFunctions, with functions of the same type being performed in the same
order as input.

• column_labels (tuple185(str186) or list187(str188), optional) -- A
list/tuple of strings that will be used to label columns in the Excel output, and to label
the pandas DataFrame columns for the data.

• column_numbers (tuple189(int190) or list191(int192), optional) -- The
indices of the columns to import from raw data files.

• start_row (int193, optional) -- The first row of data to use when importing from
raw data files.

• end_row (int194, optional) -- The last row of data to use when importing from raw
data files. Counts up from the last row, so the last row is 0, the second to last row is 1, etc.

• separator (str195, optional) -- The separator or delimeter to use to separate data
columns when importing from raw data files. For example, ',' for csv files.

• file_type (str196, optional) -- The file extension associated with the data files for
the DataSource. For example, 'txt' or 'csv'.

• num_files (int197, optional) -- The number of data files per sample for the Data-
Source. Only used when using keyword search for files.

• unique_variables (list198(str199) or tuple200(str201), optional) --
The names of all columns from the imported raw data that are needed for calculations. For
example, if importing thermogravimetric analysis (TGA) data, the unique_variables could
be ['temperature', 'mass'].

• unique_variable_indices (list202(int203) or tuple204(int205),
optional) -- The indices of the columns within column_numbers that correspond
with each of the input unique_variables.

183 https://docs.python.org/3/library/stdtypes.html#list
184 https://docs.python.org/3/library/stdtypes.html#tuple
185 https://docs.python.org/3/library/stdtypes.html#tuple
186 https://docs.python.org/3/library/stdtypes.html#str
187 https://docs.python.org/3/library/stdtypes.html#list
188 https://docs.python.org/3/library/stdtypes.html#str
189 https://docs.python.org/3/library/stdtypes.html#tuple
190 https://docs.python.org/3/library/functions.html#int
191 https://docs.python.org/3/library/stdtypes.html#list
192 https://docs.python.org/3/library/functions.html#int
193 https://docs.python.org/3/library/functions.html#int
194 https://docs.python.org/3/library/functions.html#int
195 https://docs.python.org/3/library/stdtypes.html#str
196 https://docs.python.org/3/library/stdtypes.html#str
197 https://docs.python.org/3/library/functions.html#int
198 https://docs.python.org/3/library/stdtypes.html#list
199 https://docs.python.org/3/library/stdtypes.html#str
200 https://docs.python.org/3/library/stdtypes.html#tuple
201 https://docs.python.org/3/library/stdtypes.html#str
202 https://docs.python.org/3/library/stdtypes.html#list
203 https://docs.python.org/3/library/functions.html#int
204 https://docs.python.org/3/library/stdtypes.html#tuple
205 https://docs.python.org/3/library/functions.html#int

5.1. mcetl 55

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

mcetl Documentation, Release 0.4.1

• xy_plot_indices (list206(int207, int208) or tuple209(int210,
int211), optional) -- The indices of the columns after processing that will be
the default columns for plotting in Excel.

• figure_rcparams (dict212, optional) -- A dictionary containing any changes to
Matplotlib's rcParams to use if fitting or plotting.

• excel_writer_styles (dict213(str214, None215 or dict216 or str217

or openpyxl.styles.named_styles.NamedStyle218), optional) -- A
dictionary of styles used to format the output Excel workbook. The following keys are used
when writing data from files to Excel:

'header_even', 'header_odd', 'subheader_even', 'subheader_odd', 'columns_even',
'columns_odd'

The following keys are used when writing data fit results to Excel:
'fitting_header_even', 'fitting_header_odd', 'fitting_subheader_even', 'fit-
ting_subheader_odd', 'fitting_columns_even', 'fitting_columns_odd', 'fit-
ting_descriptors_even', 'fitting_descriptors_odd'

The values for the dictionaries must be either dictionaries, with keys corresponding to key-
word inputs for openpyxl's NamedStyle, or NamedStyle objects.

• excel_row_offset (int219, optional) -- The first row to use when writing to Ex-
cel. A value of 0 would start at row 1 in Excel, 1 would start at row 2, etc.

• excel_column_offset (int220, optional) -- The first column to use when writ-
ing to Excel. A value of 0 would start at column 'A' in Excel, 1 would start at column 'B',
etc.

• entry_separation (int221, optional) -- The number of blank columns to insert
between data entries when writing to Excel.

• sample_separation (int222, optional) -- The number of blank columns to insert
between samples when writing to Excel.

• label_entries (bool223, optional) -- If True, will add a number to the column
labels for each entry in a sample if there is more than one entry. For example, the column
label 'data' would become 'data, 1', 'data, 2', etc.

excel_styles
A nested dictionary of dictionaries, used to create openpyxl NamedStyle objects to format the output Excel
file.

206 https://docs.python.org/3/library/stdtypes.html#list
207 https://docs.python.org/3/library/functions.html#int
208 https://docs.python.org/3/library/functions.html#int
209 https://docs.python.org/3/library/stdtypes.html#tuple
210 https://docs.python.org/3/library/functions.html#int
211 https://docs.python.org/3/library/functions.html#int
212 https://docs.python.org/3/library/stdtypes.html#dict
213 https://docs.python.org/3/library/stdtypes.html#dict
214 https://docs.python.org/3/library/stdtypes.html#str
215 https://docs.python.org/3/library/constants.html#None
216 https://docs.python.org/3/library/stdtypes.html#dict
217 https://docs.python.org/3/library/stdtypes.html#str
218 https://openpyxl.readthedocs.io/en/stable/api/openpyxl.styles.named_styles.html#openpyxl.styles.named_styles.NamedStyle
219 https://docs.python.org/3/library/functions.html#int
220 https://docs.python.org/3/library/functions.html#int
221 https://docs.python.org/3/library/functions.html#int
222 https://docs.python.org/3/library/functions.html#int
223 https://docs.python.org/3/library/functions.html#bool

56 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://openpyxl.readthedocs.io/en/stable/api/openpyxl.styles.named_styles.html#openpyxl.styles.named_styles.NamedStyle
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

mcetl Documentation, Release 0.4.1

Type dict224(dict225)

lengths
A list of lists of lists of integers, corresponding to the number of columns in each individual entry in the
total dataframes for the DataSource. Used to split the concatted dataframe back into individual dataframes
for each dataset.

Type list226

references
A list of dictionaries, with each dictionary containing the column numbers for each unique variable and
calculation for the merged dataframe of each dataset.

Type list227

Raises

• ValueError228 -- Raised if the input name is a blank string, or if either excel_row_offset
or excel_column_offset is < 0.

• TypeError229 -- Raised if one of the input functions is not a valid mcetl.FunctionBase
object.

• IndexError230 -- Raised if the number of data columns is less than the number of unique
variables.

merge_datasets(self, dataframes)
Merges all entries and samples into one dataframe for each dataset.

Also sets the length attribute, which will later be used to separate each dataframes back into individual
dataframes for each entry.

Parameters dataframes (list231(list232(list233(pd.DataFrame)))) -- A nested
list of list of lists of dataframes.

Returns merged_dataframes -- A list of dataframes.

Return type list234(pd.DataFrame)

print_column_labels_template(self)
Convenience function that will print a template for all the column headers.

Column headers account for all of the columns imported from raw data, the columns added by Calcula-
tionFunctions, and the columns added by SummaryFunctions.

Returns label_template -- The list of strings that serves as a template for the necessary input
for column_labels for the DataSource.

Return type list235(str236)

224 https://docs.python.org/3/library/stdtypes.html#dict
225 https://docs.python.org/3/library/stdtypes.html#dict
226 https://docs.python.org/3/library/stdtypes.html#list
227 https://docs.python.org/3/library/stdtypes.html#list
228 https://docs.python.org/3/library/exceptions.html#ValueError
229 https://docs.python.org/3/library/exceptions.html#TypeError
230 https://docs.python.org/3/library/exceptions.html#IndexError
231 https://docs.python.org/3/library/stdtypes.html#list
232 https://docs.python.org/3/library/stdtypes.html#list
233 https://docs.python.org/3/library/stdtypes.html#list
234 https://docs.python.org/3/library/stdtypes.html#list
235 https://docs.python.org/3/library/stdtypes.html#list
236 https://docs.python.org/3/library/stdtypes.html#str

5.1. mcetl 57

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

mcetl Documentation, Release 0.4.1

split_into_entries(self, merged_dataframes)
Splits the merged dataset dataframes back into dataframes for each entry.

Parameters merged_dataframes (list237(pd.DataFrame)) -- A list of dataframes.
Each dataframe will be split into lists of lists of dataframes.

Returns split_dataframes -- A list of lists of lists of dataframes, corresponding to entries and
samples within each dataset.

Return type list238(list239(list240(pd.DataFrame)))

static test_excel_styles(styles)
Tests whether the input styles create valid Excel styles with openpyxl.

Parameters styles (dict241(str242, None243 or dict244 or str245 or
openpyxl.styles.named_styles.NamedStyle246)) -- The dictionary of
styles to test. Values in the dictionary can either be None, a nested dictionary with the
necessary keys and values to create an openpyxl NamedStyle, a string (which would refer to
another NamedStyle.name), or openpyxl.styles.NamedStyle objects.

Returns Returns True if all input styles successfully create openpyxl NamedStyle objects; oth-
erwise, returns False.

Return type bool247

Notes

This is just a wrapper of ExcelWriterHandler.test_excel_styles() (page 61), and is in-
cluded because DataSource is the main-facing object of mcetl and will be used more often.

mcetl.excel_writer

ExcelWriterHandler class, used to safely open and close files and apply styles.

@author : Donald Erb Created on Dec 9, 2020

Notes

openpyxl is imported within methods of ExcelWriterHandler in order to reduce the import time of mcetl since the
writer is only needed if writing to Excel.

237 https://docs.python.org/3/library/stdtypes.html#list
238 https://docs.python.org/3/library/stdtypes.html#list
239 https://docs.python.org/3/library/stdtypes.html#list
240 https://docs.python.org/3/library/stdtypes.html#list
241 https://docs.python.org/3/library/stdtypes.html#dict
242 https://docs.python.org/3/library/stdtypes.html#str
243 https://docs.python.org/3/library/constants.html#None
244 https://docs.python.org/3/library/stdtypes.html#dict
245 https://docs.python.org/3/library/stdtypes.html#str
246 https://openpyxl.readthedocs.io/en/stable/api/openpyxl.styles.named_styles.html#openpyxl.styles.named_styles.NamedStyle
247 https://docs.python.org/3/library/functions.html#bool

58 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://openpyxl.readthedocs.io/en/stable/api/openpyxl.styles.named_styles.html#openpyxl.styles.named_styles.NamedStyle
https://docs.python.org/3/library/functions.html#bool

mcetl Documentation, Release 0.4.1

Module Contents

Classes

ExcelWriterHandler (page 59) A helper for pandas's ExcelWriter for opening/saving
files and applying styles.

class mcetl.excel_writer.ExcelWriterHandler(file_name=None, new_file=False,
styles=None, writer=None, **kwargs)

A helper for pandas's ExcelWriter for opening/saving files and applying styles.

This class is used for ensuring that an existing file is closed before saving and/or writing, if appending, and that
all desired styles are ready for usage before writing to Excel. Styles can either be openpyxl NamedStyle objects
in order to make the style available in the Excel workbook, or dictionaries detailing the style, such as {'font':
Font(...), 'border': Border(...), ...}.

Parameters

• file_name (str248 or Path) -- The file name or path for the Excel file to be created.

• new_file (bool249, optional) -- If False (default), will append to an existing file. If
True, or if no file currently exists with the given file_name, a new file will be created, even
if a file with the same name currently exists.

• styles (dict250(str251, None252 or dict253 or str254 or openpyxl.
styles.named_styles.NamedStyle255)) -- A dictionary of either nested
dictionaries used to create openpyxl style objects (Alignment, Font, etc.), a string indicating
the name of an openpyxl NamedStyle to use, a NamedStyle object or None (will use the
default style if None). All styles in the dictionary will be added to the Excel workbook if
they do not currently exist in the workbook. See Examples below to see various valid inputs
for styles.

• writer (pd.ExcelWriter or None256) -- The ExcelWriter (_OpenpyxlWriter from
pandas) used for writing to Excel. If it is a pd.ExcelWriter, its engine must be "openpyxl".

• **kwargs -- Any additional keyword arguments to pass to pd.ExcelWriter.

styles
A nested dictionary of dictionaries, used to create openpyxl NamedStyle objects to include in
self.writer.book. The styles are used as a class attribute to ensure that the necessary styles are always
included in the Excel book.

Type dict257(str258, dict259)

style_cache
The currently implemented styles within the Excel workbook. Used to quickly apply styles to cells without
having to constanly set all of the cell attributes (cell.font, cell.fill, etc.). The dictionary value is a tuple of

248 https://docs.python.org/3/library/stdtypes.html#str
249 https://docs.python.org/3/library/functions.html#bool
250 https://docs.python.org/3/library/stdtypes.html#dict
251 https://docs.python.org/3/library/stdtypes.html#str
252 https://docs.python.org/3/library/constants.html#None
253 https://docs.python.org/3/library/stdtypes.html#dict
254 https://docs.python.org/3/library/stdtypes.html#str
255 https://openpyxl.readthedocs.io/en/stable/api/openpyxl.styles.named_styles.html#openpyxl.styles.named_styles.NamedStyle
256 https://docs.python.org/3/library/constants.html#None
257 https://docs.python.org/3/library/stdtypes.html#dict
258 https://docs.python.org/3/library/stdtypes.html#str
259 https://docs.python.org/3/library/stdtypes.html#dict

5.1. mcetl 59

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://openpyxl.readthedocs.io/en/stable/api/openpyxl.styles.named_styles.html#openpyxl.styles.named_styles.NamedStyle
https://openpyxl.readthedocs.io/en/stable/api/openpyxl.styles.named_styles.html#openpyxl.styles.named_styles.NamedStyle
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

mcetl Documentation, Release 0.4.1

the cell attribute name and the value to set. Will either be ('style', string indicating NamedStyle.name) if
using NamedStyles or ('_style', openpyxl StyleArray) to indicate an anonomous style. The call to set the
cell attribute for a desired key would be setattr(cell, *style_cache[key]).

Type dict260(str261, tuple262(str263, str264 or openpyxl.styles.cell_style.StyleArray265))

writer
The ExcelWriter (_OpenpyxlWriter from pandas) used for writing to Excel.

Type pd.ExcelWriter

Notes

Either file_name or writer must be specified at initialization.

Examples

Below is a partial example of various allowable input styles. Can be openpyxl NamedStyle, str, None, or
dictionary. (Note that NamedStyle, Font, Border, and Side are gotten by importing from openpyxl.styles)

>>> styles = {
Would make the style 'Even Header' available in the output Excel file
'fitting_header_even': NamedStyle(

name='Even Header',
font=Font(size=12, bold=True),
border=Border(bottom=Side(style='thin')),
number_format='0.0'

),
Would use same format as 'fitting_header_even'
'fitting_header_odd': 'Even Header',
Basically just replaces NamedStyle from 'fitting_header_even' with
dict and removes the 'name' key. A new style would not be created
in the output Excel file.
'fitting_subheader_even': dict(

font=Font(size=12, bold=True),
aligment=Aligment(bottom=Side(style='thin')),
number_format='0.0'

),
Same as 'fitting_subheader_even', but doesn't require importing
from openpyxl. Basically just replaces all openpyxl objects with dict.
'fitting_subheader_odd': dict(

font=dict(size=12, bold=True),
aligment=dict(bottom=dict(style='thin')),
number_format='0.0'

),
Same as 'fitting_subheader_odd', but will create a NamedStyle (and
add the style to the Excel file) since 'name' is within the dictionary.
'fitting_columns_even': dict(

name='New Style',
font=dict(size=12, bold=True),

(continues on next page)

260 https://docs.python.org/3/library/stdtypes.html#dict
261 https://docs.python.org/3/library/stdtypes.html#str
262 https://docs.python.org/3/library/stdtypes.html#tuple
263 https://docs.python.org/3/library/stdtypes.html#str
264 https://docs.python.org/3/library/stdtypes.html#str
265 https://openpyxl.readthedocs.io/en/stable/api/openpyxl.styles.cell_style.html#openpyxl.styles.cell_style.StyleArray

60 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://openpyxl.readthedocs.io/en/stable/api/openpyxl.styles.cell_style.html#openpyxl.styles.cell_style.StyleArray

mcetl Documentation, Release 0.4.1

(continued from previous page)

aligment=dict(bottom=dict(style='thin')),
number_format='0.0'

),
Would use default style set by openpyxl
'fitting_columns_odd': {},
Would also use default style
'fitting_descriptors_even': None

}

Raises

• TypeError266 -- Raised if both file_name and writer are None.

• ValueError267 -- Raised if the engine of the input writer is not "openpyxl".

add_styles(self, styles)
Adds styles to the Excel workbook and update self.style_cache.

Parameters styles (dict268(str269, None270 or dict271 or str272 or
openpyxl.styles.named_styles.NamedStyle273)) -- A dictionary of ei-
ther nested dictionaries used to create openpyxl style objects (Alignment, Font, etc.), a
string indicating the name of an openpyxl NamedStyle to use, a NamedStyle object or None
(will use the default style if None). All styles in the dictionary will be added to the Excel
workbook if they do not currently exist in the workbook.

Notes

The ordering of items within styles will be preserved, so that if two NamedStyles are input with the same
name, the one appearing first in the dictionary will be created, and the second will be made to refer to the
first.

save_excel_file(self)
Tries to save the Excel file, and handles any PermissionErrors.

Saving can be cancelled if other changes to self.writer are desired before saving, or if saving is no longer
desired (the file must be open while trying to save to allow cancelling the save).

classmethod test_excel_styles(cls, styles)
Tests whether the input styles create valid Excel styles using openpyxl.

Parameters styles (dict274(str275, None276 or dict277 or str278 or
openpyxl.styles.named_styles.NamedStyle279)) -- The dictionary of
styles to test. Values in the dictionary can either be None, a nested dictionary with the

266 https://docs.python.org/3/library/exceptions.html#TypeError
267 https://docs.python.org/3/library/exceptions.html#ValueError
268 https://docs.python.org/3/library/stdtypes.html#dict
269 https://docs.python.org/3/library/stdtypes.html#str
270 https://docs.python.org/3/library/constants.html#None
271 https://docs.python.org/3/library/stdtypes.html#dict
272 https://docs.python.org/3/library/stdtypes.html#str
273 https://openpyxl.readthedocs.io/en/stable/api/openpyxl.styles.named_styles.html#openpyxl.styles.named_styles.NamedStyle
274 https://docs.python.org/3/library/stdtypes.html#dict
275 https://docs.python.org/3/library/stdtypes.html#str
276 https://docs.python.org/3/library/constants.html#None
277 https://docs.python.org/3/library/stdtypes.html#dict
278 https://docs.python.org/3/library/stdtypes.html#str
279 https://openpyxl.readthedocs.io/en/stable/api/openpyxl.styles.named_styles.html#openpyxl.styles.named_styles.NamedStyle

5.1. mcetl 61

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://openpyxl.readthedocs.io/en/stable/api/openpyxl.styles.named_styles.html#openpyxl.styles.named_styles.NamedStyle
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://openpyxl.readthedocs.io/en/stable/api/openpyxl.styles.named_styles.html#openpyxl.styles.named_styles.NamedStyle

mcetl Documentation, Release 0.4.1

necessary keys and values to create an openpyxl NamedStyle, a string (which would refer to
another NamedStyle.name), or openpyxl.styles.NamedStyle objects.

Returns success -- Returns True if all input styles successfully create openpyxl NamedStyle
objects; otherwise, returns False.

Return type bool280

mcetl.file_organizer

Provides GUIs to find files containing combinations of keywords and move files.

@author: Donald Erb Created on Sep 2, 2019

Module Contents

Functions

file_finder (page 62) Finds files that match the given keywords and file type
using a GUI.

file_mover (page 62) Takes in a list of file paths and moves a copy of each file
to the new folder.

manual_file_finder (page 63) Allows manual selection for the files for the selected
samples and datasets.

mcetl.file_organizer.file_finder(file_directory=None, file_type=None, num_files=None)
Finds files that match the given keywords and file type using a GUI.

Parameters

• file_directory (str281) -- String for the topmost folder under which all files are
searched.

• file_type (str282) -- The file extension that is being searched, eg. csv, txt, pdf.

• num_files (int283) -- The default maximum and minimum number of files to be associ-
ated with each search term.

Returns output_list -- A nested list of lists containing the file locations as strings for the files that
matched the search term. len(output_list) is equal to the number of datasets, len(output_list[i])
is equal to the number of unique keywords for dataset i, and len(outupt_list[i][j]) is equal to the
number of files for dataset i and unique keyword j.

Return type list284

mcetl.file_organizer.file_mover(file_list, new_folder=None, skip_same_files=True)
Takes in a list of file paths and moves a copy of each file to the new folder.

Parameters
280 https://docs.python.org/3/library/functions.html#bool
281 https://docs.python.org/3/library/stdtypes.html#str
282 https://docs.python.org/3/library/stdtypes.html#str
283 https://docs.python.org/3/library/functions.html#int
284 https://docs.python.org/3/library/stdtypes.html#list

62 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

mcetl Documentation, Release 0.4.1

• file_list (list285, tuple286, or str287) -- A list of strings corresponding to file
paths, all of which will have their copies moved.

• new_folder (str288 or Path) -- The folder to move all of copies of the files in the
file_list into.

• skip_same_files (bool289) -- If True, will not move any copied files if they already
exist in the destination folder; if False, will rename the copied file and move it to the desti-
nation folder.

Returns new_folder -- The string of the destination folder location.

Return type str290

mcetl.file_organizer.manual_file_finder(file_type=None)
Allows manual selection for the files for the selected samples and datasets.

Parameters file_type (str291, optional) -- The desired file extension for all files.

Returns files -- A list of lists of lists of file paths. Each list of lists corresponds to a dataset, and
each internal list corresponds to a sample in the dataset.

Return type list292(list293(list294(str295)))

mcetl.functions

Contains the classes for Functions objects.

There are three main types of Functions:

1) PreprocessFunction: preprocesses the imported data entry; for example, can separate into multiple
data entries or remove data columns.

2) CalculationFunction: performs a calculation on each of the entries within each sample within each
dataset.

3) SummaryFunction: performs a calculation once per sample or once per dataset.

@author: Donald Erb Created on Jul 31, 2020
285 https://docs.python.org/3/library/stdtypes.html#list
286 https://docs.python.org/3/library/stdtypes.html#tuple
287 https://docs.python.org/3/library/stdtypes.html#str
288 https://docs.python.org/3/library/stdtypes.html#str
289 https://docs.python.org/3/library/functions.html#bool
290 https://docs.python.org/3/library/stdtypes.html#str
291 https://docs.python.org/3/library/stdtypes.html#str
292 https://docs.python.org/3/library/stdtypes.html#list
293 https://docs.python.org/3/library/stdtypes.html#list
294 https://docs.python.org/3/library/stdtypes.html#list
295 https://docs.python.org/3/library/stdtypes.html#str

5.1. mcetl 63

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

mcetl Documentation, Release 0.4.1

Module Contents

Classes

CalculationFunction (page 64) Function that performs a calculation for every entry in
each sample.

PreprocessFunction (page 65) Function for processing data before performing any cal-
culations.

SummaryFunction (page 65) Calculation that is only performed once per sample or
once per dataset.

class mcetl.functions.CalculationFunction(name, target_columns, functions,
added_columns, function_kwargs=None)

Bases: mcetl.functions._FunctionBase

Function that performs a calculation for every entry in each sample.

Parameters

• name (str296) -- The string representation for this object.

• target_columns (str297 or list298(str299) or tuple300(str301)) -- A
string or list/tuple of strings designating the target columns for this object.

• functions (Callable or list302(Callable, Callable) or
tuple303(Callable, Callable)) -- The functions that this object uses to pro-
cess data. If only one function is given, it is assumed that the same function is used for
both calculations for the data to be written to Excel and the data to be used in python. If a
list/tuple of functions are given, it is assumed that the first function is used for processing
the data to write to Excel, and the second function is used for processing the data to be
used in python. The function should take args of list(list(pd.DataFrame)), target indices (a
list of lists of lists of numbers, corresponding to the column index in each dataframe for
each of the target columns), added columns (a list of lists of numbers, corresponding to the
column index in the dataframe for each added column), the Excel columns (a list of column
names corresponding to the column in Excel for each added column, eg 'A', 'B', if doing
the Excel calculations, otherwise None), the first row (the row number of the first row of
data in Excel, eg 3). The function should output a list of lists of pd.DataFrames. The Excel
columns and first row values are meant to ease the writing of formulas for Excel.

• added_columns (int304 or str305 or list306(str307) or
tuple308(str309)) -- The columns that will be acted upon by this object's func-
tions. If the input is an integer, then it denotes that the functions act on columns that need
to be added, with the number of columns affected by the functions being equal to the input

296 https://docs.python.org/3/library/stdtypes.html#str
297 https://docs.python.org/3/library/stdtypes.html#str
298 https://docs.python.org/3/library/stdtypes.html#list
299 https://docs.python.org/3/library/stdtypes.html#str
300 https://docs.python.org/3/library/stdtypes.html#tuple
301 https://docs.python.org/3/library/stdtypes.html#str
302 https://docs.python.org/3/library/stdtypes.html#list
303 https://docs.python.org/3/library/stdtypes.html#tuple
304 https://docs.python.org/3/library/functions.html#int
305 https://docs.python.org/3/library/stdtypes.html#str
306 https://docs.python.org/3/library/stdtypes.html#list
307 https://docs.python.org/3/library/stdtypes.html#str
308 https://docs.python.org/3/library/stdtypes.html#tuple
309 https://docs.python.org/3/library/stdtypes.html#str

64 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

mcetl Documentation, Release 0.4.1

integer. If the input is a string or list/tuple of strings, it denotes that the functions will
change the contents of an existing column(s), whose column names are the inputs.

• function_kwargs (dict310 or list311(dict312, dict313), optional) -- A
dictionary or a list of two dictionaries containing keyword arguments to be passed to the
functions. If a list of two dictionaries is given, the first and second dictionaries will be the
keyword arguments to pass to the function for processing the data to write to Excel and the
function for processing the data to be used in python, respectively. If a single dictionary
is given, then it is used for both functions. The default is None, which passes an empty
dictionary to both functions.

Raises ValueError314 -- Raised if there is an issue with added_columns or target_columns, or if
any key in the input function_kwargs is within self._forbidden_keys.

class mcetl.functions.PreprocessFunction(name, target_columns, function, func-
tion_kwargs=None, deleted_columns=None)

Bases: mcetl.functions._FunctionBase

Function for processing data before performing any calculations.

For example, can separate a single data entry into multiple entries depending on a criteria or delete unneeded
columns.

Parameters

• name (str315) -- The string representation for this object.

• target_columns (str316 or list317(str318) or tuple319(str320)) -- A
string or list/tuple of strings designating the target columns for this object.

• function (Callable) -- The function that this object uses to process data. The function
should take args of dataframe and target indices (a list of numbers, corresponding to the
column index in the dataframe for each of the target columns), and should return a list of
dataframes.

• function_kwargs (dict321, optional) -- A dictionary of keywords and values to
be passed to the function. The default is None.

• deleted_columns (str322 or list323(str324) or tuple325(str326),
optional) -- The names of columns that will be deleted by this object's function.

Raises ValueError327 -- Raised if there is an issue with the input name or target_columns.

class mcetl.functions.SummaryFunction(name, target_columns, functions, added_columns,
function_kwargs=None, sample_summary=True)

Bases: mcetl.functions.CalculationFunction (page 64)
310 https://docs.python.org/3/library/stdtypes.html#dict
311 https://docs.python.org/3/library/stdtypes.html#list
312 https://docs.python.org/3/library/stdtypes.html#dict
313 https://docs.python.org/3/library/stdtypes.html#dict
314 https://docs.python.org/3/library/exceptions.html#ValueError
315 https://docs.python.org/3/library/stdtypes.html#str
316 https://docs.python.org/3/library/stdtypes.html#str
317 https://docs.python.org/3/library/stdtypes.html#list
318 https://docs.python.org/3/library/stdtypes.html#str
319 https://docs.python.org/3/library/stdtypes.html#tuple
320 https://docs.python.org/3/library/stdtypes.html#str
321 https://docs.python.org/3/library/stdtypes.html#dict
322 https://docs.python.org/3/library/stdtypes.html#str
323 https://docs.python.org/3/library/stdtypes.html#list
324 https://docs.python.org/3/library/stdtypes.html#str
325 https://docs.python.org/3/library/stdtypes.html#tuple
326 https://docs.python.org/3/library/stdtypes.html#str
327 https://docs.python.org/3/library/exceptions.html#ValueError

5.1. mcetl 65

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

mcetl Documentation, Release 0.4.1

Calculation that is only performed once per sample or once per dataset.

Parameters

• name (str328) -- The string representation for this object.

• target_columns (str329 or list330(str331) or tuple332(str333)) -- A
string or list/tuple of strings designating the target columns for this object.

• functions (Callable or list334(Callable, Callable) or
tuple335(Callable, Callable)) -- The functions that this object uses to pro-
cess data. If only one function is given, it is assumed that the same function is used for
both calculations for the data to be written to Excel and the data to be used in python. If a
list/tuple of functions are given, it is assumed that the first function is used for processing
the data to write to Excel, and the second function is used for processing the data to be
used in python. The function should take args of list(list(pd.DataFrame)), target indices (a
list of lists of lists of numbers, corresponding to the column index in each dataframe for
each of the target columns), added columns (a list of lists of numbers, corresponding to the
column index in the dataframe for each added column), the Excel columns (a list of column
names corresponding to the column in Excel for each added column, eg 'A', 'B', if doing
the Excel calculations, otherwise None), the first row (the row number of the first row of
data in Excel, eg 3). The function should output a list of lists of pd.DataFrames. The Excel
columns and first row values are meant to ease the writing of formulas for Excel.

• added_columns (int336 or str337 or list338(str339) or
tuple340(str341)) -- The columns that will be acted upon by this object's func-
tions. If the input is an integer, then it denotes that the functions act on columns that need
to be added, with the number of columns affected by the functions being equal to the input
integer. If the input is a string or list/tuple of strings, it denotes that the functions will
change the contents of an existing column(s), whose column names are the inputs. Further,
SummaryFunctions can only modify other SummaryFunction columns with matching
sample_summary attributes.

• function_kwargs (dict342 or list343(dict344, dict345), optional) -- A
dictionary or a list of two dictionaries containing keyword arguments to be passed to the
functions. If a list of two dictionaries is given, the first and second dictionaries will be the
keyword arguments to pass to the function for processing the data to write to Excel and the
function for processing the data to be used in python, respectively. The default is None,
which passes an empty dictionary to both functions.

• sample_summary (bool346, optional) -- If True (default), denotes that the Summa-
328 https://docs.python.org/3/library/stdtypes.html#str
329 https://docs.python.org/3/library/stdtypes.html#str
330 https://docs.python.org/3/library/stdtypes.html#list
331 https://docs.python.org/3/library/stdtypes.html#str
332 https://docs.python.org/3/library/stdtypes.html#tuple
333 https://docs.python.org/3/library/stdtypes.html#str
334 https://docs.python.org/3/library/stdtypes.html#list
335 https://docs.python.org/3/library/stdtypes.html#tuple
336 https://docs.python.org/3/library/functions.html#int
337 https://docs.python.org/3/library/stdtypes.html#str
338 https://docs.python.org/3/library/stdtypes.html#list
339 https://docs.python.org/3/library/stdtypes.html#str
340 https://docs.python.org/3/library/stdtypes.html#tuple
341 https://docs.python.org/3/library/stdtypes.html#str
342 https://docs.python.org/3/library/stdtypes.html#dict
343 https://docs.python.org/3/library/stdtypes.html#list
344 https://docs.python.org/3/library/stdtypes.html#dict
345 https://docs.python.org/3/library/stdtypes.html#dict
346 https://docs.python.org/3/library/functions.html#bool

66 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

mcetl Documentation, Release 0.4.1

ryFunction summarizes a sample; if False, denotes that the SummaryFunction summarizes
a dataset.

Raises ValueError347 -- Raised if there is an issue with added_columns or target_columns, or if
any key in the input function_kwargs is within self._forbidden_keys.

mcetl.main_gui

Provides GUIs to import data depending on the data source used, process and/or fit the data, and save everything to
Excel.

@author: Donald Erb Created on May 5, 2020

Notes

The imports for the fitting and plotting guis are within their respective functions to reduce the time it takes for this
module to be imported. Likewise, openpyxl is imported within _write_to_excel.

mcetl.main_gui.SAVE_FOLDER
The file path to the folder in which all 'previous_files_{DataSource.name}.json' files are saved. Depends on
operating system.

Type pathlib.Path348

Module Contents

Functions

launch_main_gui (page 67) Goes through all steps to find files, process/fit/plot the
imported data, and save to Excel.

mcetl.main_gui.launch_main_gui(data_sources, fitting_mpl_params=None)
Goes through all steps to find files, process/fit/plot the imported data, and save to Excel.

Parameters

• data_sources (list349(DataSource (page 54)) or tuple350(DataSource
(page 54)) or DataSource (page 54)) -- A list or tuple of mcetl.DataSource objects, or
a single DataSource.

• fitting_mpl_params (dict351, optional) -- A dictionary of changes for Mat-
plotlib's rcParams to use during fitting. If None, will use the selected DataSource's fig-
ure_rcparams attribute.

Returns

output --

A dictionary containing the following keys and values:

347 https://docs.python.org/3/library/exceptions.html#ValueError
348 https://docs.python.org/3/library/pathlib.html#pathlib.Path
349 https://docs.python.org/3/library/stdtypes.html#list
350 https://docs.python.org/3/library/stdtypes.html#tuple
351 https://docs.python.org/3/library/stdtypes.html#dict

5.1. mcetl 67

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

mcetl Documentation, Release 0.4.1

'dataframes': list or None A list of lists of dataframes, with each dataframe contain-
ing the data imported from a raw data file; will be None if the function fails before
importing data, or if the only processing step taken was moving files.

'fit_results': list or None A nested list of lists of lmfit.ModelResult objects, with each
ModelResult pertaining to the fitting of a data entry, each list of ModelResults con-
taining all of the fits for a single sample, and east list of lists pertaining to the data
within one dataset. Will be None if fitting is not done, or only partially filled if the
fitting process ends early.

'plot_results': list or None A list of lists, with one entry per dataset. Each interior list
is composed of a matplotlib.Figure object and a dictionary of matplotlib.Axes objects.
Will be None if plotting is not done, or only partially filled if the plotting process ends
early.

'writer': pd.ExcelWriter or None The pandas ExcelWriter used to create the output
Excel file; will be None if the output results were not saved to Excel.

Return type dict352

Notes

The entire function is wrapped in a try-except block. If the user exits the program early by exiting out of a GUI,
a custom WindowCloseError exception is thrown, which is just passed, allowing the program is close without
error. If other exceptions occur, their traceback is printed.

mcetl.plot_utils

Provides utility functions, classes, and constants for plotting.

Separated from utils.py to reduce import load time since matplotlib imports are not needed for base usage. Useful
functions are put here in order to prevent circular importing within the other files.

@author: Donald Erb Created on Nov 11, 2020

mcetl.plot_utils.CANVAS_SIZE
A tuple specifying the size (in pixels) of the figure canvas used in various GUIs for mcetl. This can be modified
if the user wishes a larger or smaller canvas. The default is (800, 800).

Type tuple353(int354, int355)

Module Contents

Classes

EmbeddedFigure (page 69) Class defining a PySimpleGUI window with an embed-
ded matplotlib Figure.

PlotToolbar (page 71) Custom toolbar without the subplots and save figure but-
tons.

352 https://docs.python.org/3/library/stdtypes.html#dict
353 https://docs.python.org/3/library/stdtypes.html#tuple
354 https://docs.python.org/3/library/functions.html#int
355 https://docs.python.org/3/library/functions.html#int

68 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

mcetl Documentation, Release 0.4.1

Functions

determine_dpi (page 71) Gives the correct dpi to fit the figure within the GUI
canvas.

draw_figure_on_canvas (page 72) Places the figure and toolbar onto the canvas.
get_dpi_correction (page 73) Calculates the correction factor needed to create a figure

with the desired dpi.
scale_axis (page 73) Calculates the new bounds to scale the current axis

bounds.

class mcetl.plot_utils.EmbeddedFigure(x, y, click_list=None, enable_events=True,
enable_keybinds=True, tool-
bar_class=NavigationToolbar2Tk)

Class defining a PySimpleGUI window with an embedded matplotlib Figure.

Class to be used to define BackgroundSelector and PeakSelector classes, which share common functions.

Parameters

• x (array-like) -- The x-values to be plotted.

• y (array-like) -- The y-values to be plotted.

• click_list (list356, optional) -- A list of selected points on the plot.

• enable_events (bool357, optional) -- If True (default), will connect self.events
(defaults to self._on_click, self._on_pick, and self._on_key) to the figure when it is drawn
on the canvas. If False, the figure will have no connected events.

• enable_keybinds (bool358, optional) -- If True (default), will connect the mat-
plotlib keybind events to the figure.

• toolbar_class (NavigationToolbar2Tk, optional) -- The class of the tool-
bar to place in the window. The default is NavigationToolbar2Tk.

x
The x-values to be plotted.

Type array-like

y
The y-values to be plotted.

Type array-like

click_list
A list of selected points on the plot.

Type list359

figure
The figure embedded in the window.

Type plt.Figure

axis
The main axis on the figure which owns the events.

356 https://docs.python.org/3/library/stdtypes.html#list
357 https://docs.python.org/3/library/functions.html#bool
358 https://docs.python.org/3/library/functions.html#bool
359 https://docs.python.org/3/library/stdtypes.html#list

5.1. mcetl 69

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

mcetl Documentation, Release 0.4.1

Type plt.Axes

canvas
The PySimpleGUI canvas element in the window which contains the figure.

Type sg.Canvas

toolbar_canvas
The PySimpleGUI canvas element that contains the toolbar for the figure.

Type sg.Canvas

picked_object
The selected Artist objected on the figure. Useful for pick events.

Type plt.Artist

xaxis_limits
The x axis limits when the figure is first created. The values are used to determine the size of the Ellipse
place by the _create_circle function. The initial limits are used so that zooming on the figure does not
change the size of the Ellipse.

Type tuple360

yaxis_limits
The y axis limits when the figure is first created.

Type tuple361

events
A list containing the events for the figure. Each item in the list is a list or tuple with the first item being the
matplotlib event, such as 'pick_event', and the second item is a callable (function) to be executed when the
event occurs.

Type list362(tuple363(str364, Callable))

canvas_size
The size, in pixels, of the figure to be created. Default is (CANVAS_SIZE[0], CANVAS_SIZE[1] - 100),
which is (800, 700).

Type tuple365(float366, float367)

toolbar_class
The class of the toolbar to place in the window. The default is NavigationToolbar2Tk.

Type NavigationToolbar2Tk

window
The PySimpleGUI window containing the figure.

Type sg.Window

enable_keybinds
If True, will allow using matplotlib's keybinds to trigger events on the figure.

Type bool368

360 https://docs.python.org/3/library/stdtypes.html#tuple
361 https://docs.python.org/3/library/stdtypes.html#tuple
362 https://docs.python.org/3/library/stdtypes.html#list
363 https://docs.python.org/3/library/stdtypes.html#tuple
364 https://docs.python.org/3/library/stdtypes.html#str
365 https://docs.python.org/3/library/stdtypes.html#tuple
366 https://docs.python.org/3/library/functions.html#float
367 https://docs.python.org/3/library/functions.html#float
368 https://docs.python.org/3/library/functions.html#bool

70 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

mcetl Documentation, Release 0.4.1

Notes

This class allows easy subclassing to create simple windows with embedded matplotlib figures.

A typical __init__ for a subclass should create the figure and axes, create the window, and then place the figure
within the window's canvas. For example (note that plt designates matplotlib.pyplot)

>>> class SimpleEmbeddedFigure(EmbeddedFigure):
def __init__(x, y, **kwargs):

super().__init__(x, y, **kwargs)
self.figure, self.axis = plt.subplots()
self.axis.plot(self.x, self.y)
self._create_window()
self._place_figure_on_canvas()

The only function that should be publically available is the event_loop method, which should return the desired
output.

To close the window, use the self._close() method, which ensures that both the window and the figure are
correctly closed.

Initialize self. See help(type(self)) for accurate signature.

event_loop(self)
Handles the event loop for the GUI.

Notes

This function should typically be overwritten by a subclass, and should typically return any desired values
from the embedded figure.

This simple implementation makes the window visible, and closes the window as soon as anything in the
window is clicked.

class mcetl.plot_utils.PlotToolbar(fig_canvas, canvas, **kwargs)
Bases: matplotlib.backends.backend_tkagg.NavigationToolbar2Tk

Custom toolbar without the subplots and save figure buttons.

Ensures that saving is done through the save menu in the window, which gives better options for output image
quality and ensures the figure dimensions are correct. The subplots button is removed so that the user does not
mess with the plot layout since it is handled by using matplotlib's tight layout.

Parameters

• fig_canvas (matplotlib.FigureCanvas) -- The figure canvas on which to oper-
ate.

• canvas (tkinter.Canvas) -- The Canvas element which owns this toolbar.

• **kwargs -- Any additional keyword arguments to pass to NavigationToolbar2Tk.

mcetl.plot_utils.determine_dpi(fig_height, fig_width, dpi, canvas_size=CANVAS_SIZE)
Gives the correct dpi to fit the figure within the GUI canvas.

Parameters

• fig_height (float369) -- The figure height.

• fig_width (float370) -- The figure width.

369 https://docs.python.org/3/library/functions.html#float
370 https://docs.python.org/3/library/functions.html#float

5.1. mcetl 71

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

mcetl Documentation, Release 0.4.1

• dpi (float371) -- The desired figure dpi.

• canvas_size (tuple372(int373, int374), optional) -- The size of the canvas
that the figure will be placed on. Defaults to CANVAS_SIZE.

Returns The correct dpi to fit the figure onto the GUI canvas.

Return type float375

Notes

When not saving, the dpi needs to be scaled to fit the figure on the GUI's canvas, and that scaling is called
size_scale. For example, if the desired size was 1600 x 1200 pixels with a dpi of 300, the figure would be scaled
down to 800 x 600 pixels to fit onto the canvas, so the dpi would be changed to 150, with a size_scale of 0.5.

A dpi_scale correction is needed because the qt5Agg backend will change the dpi to 2x the specified dpi when
the display scaling in Windows is not 100%. I am not sure how it works on non-Windows operating systems.

The final dpi when not saving is equal to dpi * size_scale * dpi_scale.

mcetl.plot_utils.draw_figure_on_canvas(canvas, figure, toolbar_canvas=None, tool-
bar_class=NavigationToolbar2Tk, kwargs=None)

Places the figure and toolbar onto the canvas.

Parameters

• canvas (tkinter.Canvas) -- The tkinter Canvas element for the figure.

• figure (plt.Figure) -- The figure to be place on the canvas.

• toolbar_canvas (tkinter.Canvas, optional) -- The tkinter Canvas element
for the toolbar.

• toolbar_class (NavigationToolbar2Tk, optional) -- The toolbar class used
to create the toolbar for the figure. The default is NavigationToolbar2Tk.

• kwargs (dict376, optional) -- Keyword arguments designating how to pack the fig-
ure into the window. Relevant keys are 'canvas' and 'toolbar', with values being dictionaries
containing keyword arguments to pass to pack.

Returns

• figure_canvas (FigureCanvasTkAgg or None) -- The canvas containing the figure. Is None
if drawing the canvas caused an exception.

• toolbar (NavigationToolbar2Tk or None) -- The created toolbar. Is None if toolbar_canvas
is None, or if there was an error when drawing figure_canvas.

371 https://docs.python.org/3/library/functions.html#float
372 https://docs.python.org/3/library/stdtypes.html#tuple
373 https://docs.python.org/3/library/functions.html#int
374 https://docs.python.org/3/library/functions.html#int
375 https://docs.python.org/3/library/functions.html#float
376 https://docs.python.org/3/library/stdtypes.html#dict

72 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

mcetl Documentation, Release 0.4.1

Notes

The canvas children are destroyed after drawing the figure canvas so that there is a seamless transition from the
old canvas to the new canvas.

The toolbar is packed before the figure canvas because the figure canvas shoulud be more flexible to resizing if
they are on the same canvas.

mcetl.plot_utils.get_dpi_correction(dpi)
Calculates the correction factor needed to create a figure with the desired dpi.

Necessary because some matplotlib backends (namely qt5Agg) will adjust the dpi of the figure after creation.

Parameters dpi (float377 or int378) -- The desired figure dpi.

Returns dpi_correction -- The scaling factor needed to create a figure with the desired dpi.

Return type float379

Notes

The matplotlib dpi correction occurs when the operating system display scaling is set to any value not equal to
100% (at least on Windows, other operating systems are unknown). This may cause issues when using UHD
monitors, but I cannot test.

To get the desired dpi, simply create a figure with a dpi equal to dpi * dpi_correction.

mcetl.plot_utils.scale_axis(axis_bounds, lower_scale=None, upper_scale=None)
Calculates the new bounds to scale the current axis bounds.

The new bounds are calculated by multiplying the desired scale factor by the current difference of the upper and
lower bounds, and then adding (for upper bound) or subtracting (for lower bound) from the current bound.

Parameters

• axis_bounds (tuple380(float381, float382)) -- The current lower and upper axis
bounds.

• lower_scale (float383, optional) -- The desired fraction by which to scale the
current lower bound. If None, will not scale the current lower bounds.

• upper_scale (float384, optional) -- The desired fraction by which to scale the
current upper bound. If None, will not scale the current upper bounds.

Returns

• lower_bound (float) -- The lower bound after scaling.

• upper_bound (float) -- The upper bound after scaling.

377 https://docs.python.org/3/library/functions.html#float
378 https://docs.python.org/3/library/functions.html#int
379 https://docs.python.org/3/library/functions.html#float
380 https://docs.python.org/3/library/stdtypes.html#tuple
381 https://docs.python.org/3/library/functions.html#float
382 https://docs.python.org/3/library/functions.html#float
383 https://docs.python.org/3/library/functions.html#float
384 https://docs.python.org/3/library/functions.html#float

5.1. mcetl 73

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

mcetl Documentation, Release 0.4.1

mcetl.raw_data

Creates folders and files with simulated data for various characterization techniques

Notes

All data is made up and does not correspond to the materials listed. The data is meant to simply emulate real data and
allow for basic analysis.

@author: Donald Erb Created on Jun 15, 2020

Module Contents

Functions

generate_raw_data (page 74) Generates data for all of the techniques in this file.

mcetl.raw_data.generate_raw_data(directory=None, num_files=None, show_plots=False)
Generates data for all of the techniques in this file.

Convenience function to generate data for all techniques rather that calling the functions one at a time.

Parameters

• directory (str385, optional) -- The file path to place the Raw Data folder.

• num_files (int386, optional) -- The number of files to create per characterization
technique.

• show_plots (bool387, optional) -- If True, will show plots of the created data. If
False (default), will close the created figures and not show the plots.

Notes

Currently supported characterization techniques include: XRD, FTIR, Raman, TGA, DSC, Rheometry,
Uniaxial tensile test, Pore Size Analysis

mcetl.utils

Provides utility functions, classes, and constants.

Useful functions are put here in order to prevent circular importing within the other files.

The functions contained within this module ease the use of user-interfaces, selecting options for opening files, and
working with Excel.

@author: Donald Erb Created on Jul 15, 2020

mcetl.utils.PROCEED_COLOR
The button color for all buttons that proceed to the next window. The default is ('white', '#00A949'), where
'#00A949' is a bright green.

385 https://docs.python.org/3/library/stdtypes.html#str
386 https://docs.python.org/3/library/functions.html#int
387 https://docs.python.org/3/library/functions.html#bool

74 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

mcetl Documentation, Release 0.4.1

Type tuple388(str389, str390)

Module Contents

Functions

check_availability (page 75) Checks whether an optional dependency is available to
import.

doc_lru_cache (page 76) Decorator that allows keeping a function's docstring
when using functools.lru_cache.

excel_column_name (page 76) Converts 1-based index to the Excel column name.
get_min_size (page 77) Returns the minimum size for a GUI element to match

the screen size.
open_multiple_files (page 77) Creates a prompt to open multiple files and add their

contents to a dataframe.
optimize_memory (page 77) Optimizes dataframe memory usage by converting data

types.
raw_data_import (page 78) Used to import data from the specified file into pandas

DataFrames.
safely_close_window (page 78) Closes a PySimpleGUI window and removes the win-

dow and its layout.
select_file_gui (page 78) GUI to select a file and input the necessary options to

import its data.
series_to_numpy (page 79) Tries to convert a pandas Series to a numpy array with

the desired dtype.
set_dpi_awareness (page 80) Sets DPI awareness for Windows operating system so

that GUIs are not blurry.
show_dataframes (page 80) Used to show data to help select the right columns or

datasets from the data.
string_to_unicode (page 80) Converts strings to unicode by replacing '\\' with '\

'.
stringify_backslash (page 81) Fixes strings containing backslash, such as '\n', so

that they display properly in GUIs.
validate_inputs (page 81) Validates entries from a PySimpleGUI window and con-

verts to the desired type.
validate_sheet_name (page 82) Ensures that the desired Excel sheet name is valid.

exception mcetl.utils.WindowCloseError
Bases: Exception391

Custom exception to allow exiting a GUI window to stop the program.

Initialize self. See help(type(self)) for accurate signature.

with_traceback()
Exception.with_traceback(tb) -- set self.__traceback__ to tb and return self.

mcetl.utils.check_availability(module)
Checks whether an optional dependency is available to import.

388 https://docs.python.org/3/library/stdtypes.html#tuple
389 https://docs.python.org/3/library/stdtypes.html#str
390 https://docs.python.org/3/library/stdtypes.html#str
391 https://docs.python.org/3/library/exceptions.html#Exception

5.1. mcetl 75

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception

mcetl Documentation, Release 0.4.1

Does not check the module version since it is assumed that the parent module will do a version check if the
module is actually usable.

Parameters module (str392) -- The name of the module.

Returns True if the module can be imported, False if it cannot.

Return type bool393

Notes

It is faster to use importlib to check the availability of the module rather than doing a try-except block to try and
import the module, since importlib does not actually import the module.

mcetl.utils.doc_lru_cache(function=None, **lru_cache_kwargs)
Decorator that allows keeping a function's docstring when using functools.lru_cache.

Parameters

• function (Callable) -- The function to use. If used as a decorator and
lru_cache_kwargs are specified, then function will be None.

• **lru_cache_kwargs -- Any keyword arguments to pass to functools.lru_cache (max-
size and/or typed, as of Python 3.9).

Examples

A basic usage of this decorator would look like:

>>> @doc_lru_cache(maxsize=200)
def function(arg, kwarg=1)

return arg + kwarg

mcetl.utils.excel_column_name(index)
Converts 1-based index to the Excel column name.

Parameters index (int394) -- The column number. Must be 1-based, ie. the first column number
is 1 rather than 0.

Returns col_name -- The column name for the input index, eg. an index of 1 returns 'A'.

Return type str395

Raises ValueError396 -- Raised if the input index is not in the range 1 <= index <= 18278,
meaning the column name is not within 'A'...'ZZZ'.

392 https://docs.python.org/3/library/stdtypes.html#str
393 https://docs.python.org/3/library/functions.html#bool
394 https://docs.python.org/3/library/functions.html#int
395 https://docs.python.org/3/library/stdtypes.html#str
396 https://docs.python.org/3/library/exceptions.html#ValueError

76 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

mcetl Documentation, Release 0.4.1

Notes

Caches the result so that any repeated index lookups are faster, and uses recursion to make better usage of the
cache.

chr(64 + remainder) converts the remainder to a character, where 64 denotes ord('A') - 1, so if remainder = 1,
chr(65) = 'A'.

mcetl.utils.get_min_size(default_size, scale, dimension='both')
Returns the minimum size for a GUI element to match the screen size.

Parameters

• default_size (int397) -- The default number of pixels to use. Needed because
sg.Window.get_screen_size() can return the total screen size when using multiple screens
on some linux systems.

• scale (float398) -- The scale factor to apply to the screen size as reported by
sg.Window.get_screen_size. For example, if the element size was desired to be at most
50% of the minimum screen dimension, then the scale factor is 0.5.

• dimension (str399) -- The screen dimension to compare. Can be either 'width', 'height',
or 'both'.

Returns The minimum pixel count among scale * screen height, scale * screen width, and de-
fault_size.

Return type int400

mcetl.utils.open_multiple_files()
Creates a prompt to open multiple files and add their contents to a dataframe.

Returns dataframes -- A list of dataframes containing the imported data from the selected files.

Return type list401

mcetl.utils.optimize_memory(dataframe, convert_objects=False)
Optimizes dataframe memory usage by converting data types.

Optimizes object dtypes by trying to convert to other dtypes, if the pandas version is greater than 1.0.0. Opti-
mizes numerical dtypes by downcasting to the most appropriate dtype.

Parameters

• dataframe (pd.DataFrame) -- The dataframe to optimize.

• convert_objects (bool402, optional) -- If True, will attempt to convert columns
with object dtype if the pandas version is >= 1.0.0.

Returns dataframe -- The memory-optimized dataframe.

Return type pd.DataFrame

397 https://docs.python.org/3/library/functions.html#int
398 https://docs.python.org/3/library/functions.html#float
399 https://docs.python.org/3/library/stdtypes.html#str
400 https://docs.python.org/3/library/functions.html#int
401 https://docs.python.org/3/library/stdtypes.html#list
402 https://docs.python.org/3/library/functions.html#bool

5.1. mcetl 77

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

mcetl Documentation, Release 0.4.1

Notes

convert_objects is needed because currently, when object columns are converted to a dtype of string, the row
becomes a StringArray object, which does not have the tolist() method curently implemented (as of pandas
version 1.0.5). openpyxl's dataframe_to_rows method uses each series's series.values.tolist() method to convert
the dataframe into a generator of rows, so having a StringArray row without a tolist method causes an exception
when using openpyxl's dataframe_to_rows.

Do not convert object dtypes to pandas's Int and Float dtypes since they do not mesh well with other modules.

Iterate through columns one at a time rather using dataframe.select_dtypes so that each column is overwritten
immediately, rather than making a copy of all the selected columns, reducing memory usage.

mcetl.utils.raw_data_import(window_values, file, show_popup=True)
Used to import data from the specified file into pandas DataFrames.

Also used to show how data will look after using certain import values.

Parameters

• window_values (dict403) -- A dictionary with keys 'row_start', 'row_end', columns',
'separator', and optionally 'sheet'.

• file (str404 or pathlib.Path405 or pd.ExcelFile) -- A string or Path for
the file to be imported, or a pandas ExcelFile, to use for reading spreadsheet data.

• show_popup (bool406) -- If True, will display a popup window showing a table of the
data.

Returns dataframes -- A list of dataframes containing the data after importing if show_popup is
False, otherwise returns None.

Return type list407(pd.DataFrame) or None408

Notes

If using a spreadsheet format ('xls', 'xlsx', 'odf', etc.), allows using any of the available engines for pan-
das.read_excel, and will just let pandas notify the user if the proper engine is not installed.

Optimizes the memory usage of the imported data before returning.

mcetl.utils.safely_close_window(window)
Closes a PySimpleGUI window and removes the window and its layout.

Used when exiting a window early by manually closing the window. Ensures that the window is properly closed
and then raises a WindowCloseError exception, which can be used to determine that the window was manually
closed.

Parameters window (sg.Window) -- The window that will be closed.

Raises WindowCloseError (page 75) -- Custom exception to notify that the window has been
closed earlier than expected.

mcetl.utils.select_file_gui(data_source=None, file=None, previous_inputs=None, as-
sign_columns=False)

GUI to select a file and input the necessary options to import its data.

403 https://docs.python.org/3/library/stdtypes.html#dict
404 https://docs.python.org/3/library/stdtypes.html#str
405 https://docs.python.org/3/library/pathlib.html#pathlib.Path
406 https://docs.python.org/3/library/functions.html#bool
407 https://docs.python.org/3/library/stdtypes.html#list
408 https://docs.python.org/3/library/constants.html#None

78 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None

mcetl Documentation, Release 0.4.1

Parameters

• data_source (DataSource (page 54), optional) -- The DataSource object used
for opening the file.

• file (str409, optional) -- A string containing the path to the file to be imported.

• previous_inputs (dict410, optional) -- A dictionary containing the values from
a previous usage of this function, that will be used to overwrite the defaults. Note, if opening
Excel files, the previous_inputs will have no effect.

• assign_columns (bool411, optional) -- If True, designates that the columns for
each unique variable in the data source need to be identified. If False (or if data_source is
None), then will not prompt user to select columns for variables.

Returns values -- A dictionary containing the items necessary for importing data from the selected
file.

Return type dict412

Notes

If using a spreadsheet format ('xls', 'xlsx', 'odf', etc.), allows using any of the available engines for pan-
das.read_excel, and will just let pandas notify the user if the proper engine is not installed. The file selection
window, however, will only show 'xlsx', 'xlsm', 'csv', 'txt', and potentially 'xls', so that users are not steered
towards selecting a format that does not work with the default mcetl libraries.

mcetl.utils.series_to_numpy(series, dtype=float)
Tries to convert a pandas Series to a numpy array with the desired dtype.

If initial conversion does not work, tries to convert series to object first. If that is not successful and if the first
item is a string, assumes the first item is a header, converts it to None, and tries the conversion. If that is still
unsuccessful, then an array of the series is returned without changing the dtype.

Parameters

• series (pd.Series) -- The series to convert to numpy with the desired dtype.

• dtype (type413, optional) -- The dtype to use in the numpy array of the series. De-
fault is float.

Returns output -- The input series with the specified dtype if conversion was successful. Otherwise,
the output is an ndarray of the input series without dtype conversion.

Return type np.ndarray

409 https://docs.python.org/3/library/stdtypes.html#str
410 https://docs.python.org/3/library/stdtypes.html#dict
411 https://docs.python.org/3/library/functions.html#bool
412 https://docs.python.org/3/library/stdtypes.html#dict
413 https://docs.python.org/3/library/functions.html#type

5.1. mcetl 79

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#type

mcetl Documentation, Release 0.4.1

Notes

This function is needed because pandas's pd.NA and extension arrays do not work well with other modules and
can be difficult to convert.

mcetl.utils.set_dpi_awareness(awareness_level=1)
Sets DPI awareness for Windows operating system so that GUIs are not blurry.

Fixes blurry tkinter GUIs due to weird dpi scaling in Windows os. Other operating systems are ignored.

Parameters awareness_level ({1, 0, 2}) -- The dpi awareness level to set. 0 turns off dpi
awareness, 1 sets dpi awareness to scale with the system dpi and automatically changes when
the system dpi changes, and 2 sets dpi awareness per monitor and does not change when system
dpi changes. Default is 1.

Raises ValueError414 -- Raised if awareness_level is not 0, 1, or 2.

Notes

Will only work on Windows 8.1 or Windows 10. Not sure if earlier versions of Windows have this issue anyway.

mcetl.utils.show_dataframes(dataframes, title='Raw Data')
Used to show data to help select the right columns or datasets from the data.

Parameters

• dataframes (list415 or pd.DataFrame) -- Either (1) a pandas DataFrame, (2) a
list of DataFrames, or (3) a list of lists of DataFrames. The layout of the window will depend
on the input type.

• title (str416, optional) -- The title for the popup window.

Returns window -- If no exceptions occur, a PySimpleGUI window will be returned; otherwise,
None will be returned.

Return type sg.Window or None417

mcetl.utils.string_to_unicode(input_list)
Converts strings to unicode by replacing '\\' with '\'.

Necessary because user input from text elements in GUIs are raw strings and will convert any '\' input by the
user to '\\', which will not be converted to the desired unicode. If the string already has unicode characters,
it will be left alone.

Also converts things like '\\n' and '\\t' to '\n' and '\t', respectively, so that inputs are correctly
interpreted.

Parameters input_list ((list418, tuple419) or str420) -- A container of strings or a
single string.

Returns output -- A container of strings or a single string, depending on the input, with the unicode
correctly converted.

414 https://docs.python.org/3/library/exceptions.html#ValueError
415 https://docs.python.org/3/library/stdtypes.html#list
416 https://docs.python.org/3/library/stdtypes.html#str
417 https://docs.python.org/3/library/constants.html#None
418 https://docs.python.org/3/library/stdtypes.html#list
419 https://docs.python.org/3/library/stdtypes.html#tuple
420 https://docs.python.org/3/library/stdtypes.html#str

80 Chapter 5. API Reference

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

mcetl Documentation, Release 0.4.1

Return type (list421, tuple422) or str423

Notes

Uses raw_unicode_escape encoding to ensure that any existing unicode is correctly decoded; otherwise, it would
translate incorrectly.

If using mathtext in matplotlib and want to do something like ν, input $\\nu$ in the GUI, which gets
converted to $\\\\nu$ by the GUI, and in turn will be converted back to $\\nu$ by this fuction, which
matplotlib considers equivalent to ν.

mcetl.utils.stringify_backslash(input_string)
Fixes strings containing backslash, such as '\n', so that they display properly in GUIs.

Parameters input_string (str424) -- The string that potentially contains a backslash character.

Returns output_string -- The string after replacing various backslash characters with their double
backslash versions.

Return type str425

Notes

It is necessary to replace multiple characters because things like '\n' are considered unique characters, so
simply replacing the '\' would not work.

mcetl.utils.validate_inputs(window_values, integers=None, floats=None, strings=None,
user_inputs=None, constraints=None)

Validates entries from a PySimpleGUI window and converts to the desired type.

Parameters

• window_values (dict426) -- A dictionary of values from a PySimpleGUI window, gen-
erated by using window.read().

• integers (list427, optional) -- A list of lists (see Notes below), with each key cor-
responding to a key in the window_values dictionary and whose values should be integers.

• floats (list428, optional) -- A list of lists (see Notes below), with each key corre-
sponding to a key in the window_values dictionary and whose values should be floats.

• strings (list429, optional) -- A list of lists (see Notes below), with each key corre-
sponding to a key in the window_values dictionary and whose values should be non-empty
strings.

• user_inputs (list430, optional) -- A list of lists (see Notes below), with each
key corresponding to a key in the window_values dictionary and whose values should be a
certain data type; the values are first determined by separating each value using ',' (default)
or the last index.

421 https://docs.python.org/3/library/stdtypes.html#list
422 https://docs.python.org/3/library/stdtypes.html#tuple
423 https://docs.python.org/3/library/stdtypes.html#str
424 https://docs.python.org/3/library/stdtypes.html#str
425 https://docs.python.org/3/library/stdtypes.html#str
426 https://docs.python.org/3/library/stdtypes.html#dict
427 https://docs.python.org/3/library/stdtypes.html#list
428 https://docs.python.org/3/library/stdtypes.html#list
429 https://docs.python.org/3/library/stdtypes.html#list
430 https://docs.python.org/3/library/stdtypes.html#list

5.1. mcetl 81

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

mcetl Documentation, Release 0.4.1

• constraints (list431, optional) -- A list of lists (see Notes below), with each key
corresponding to a key in the window_values dictionary and whose values should be ints or
floats constrained between upper and lower bounds.

Returns True if all data in the window_values dictionary is correct. False if there is any error with
the values in the window_values dictionary.

Return type bool432

Notes

Inputs for integers, floats, and strings are [[key, display text],].

For example: [['peak_width', 'peak width']]

Inputs for user_inputs are [[key, display text, data type, allow_empty_input (optional), separator (optional)],],

where separator is a string, and allow_empty_input is a boolean. If no separator is given, it is assumed to be a
comma (','), and if no allow_empty_input value is given, it is assumed to be False. user_inputs can also be used
to run the inputs through a function by setting the data type to a custom function. Use None as the separator if
only a single value is wanted. For example: [

['peak_width', 'peak width', float], # ensures each entry is a float ['peak_width_2', 'peak width 2', int,
False, ';'], # uses ';' as the separator ['peak_width_3', 'peak width 3', function, False, None], # no
separator, verify with function ['peak_width_4', 'peak width 4', function, True, None] # allows empty
input

]

Inputs for constraints are [[key, display text, lower bound, upper bound (optional)],],

where lower and upper bounds are strings with the operator and bound, such as "> 10". If lower bound or
upper bound is None, then the operator and bound is assumed to be >=, -np.inf and <=, np.inf, respectively. For
example: [

['peak_width', 'peak width', '> 10', '< 20'], # 10 < peak_width < 20 ['peak_width_2', 'peak width 2',
None, '<= 5'] # -inf <= peak_width_2 <= 5 ['peak_width_3', 'peak width 3', '> 1'] # 1 < peak_width_2
<= inf

]

The display text will be the text that is shown to the user if the value of window_values[key] fails the validation.

#TODO eventually collect all errors so they can all be fixed at once.

mcetl.utils.validate_sheet_name(sheet_name)
Ensures that the desired Excel sheet name is valid.

Parameters sheet_name (str433) -- The desired sheet name.

Returns sheet_name -- The input sheet name. Only returned if it is valid.

Return type str434

Raises ValueError435 -- Raised if the sheet name is greater than 31 characters or if it contains
any of the following: \, /, ?, *, [,], :

431 https://docs.python.org/3/library/stdtypes.html#list
432 https://docs.python.org/3/library/functions.html#bool
433 https://docs.python.org/3/library/stdtypes.html#str
434 https://docs.python.org/3/library/stdtypes.html#str
435 https://docs.python.org/3/library/exceptions.html#ValueError

82 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

mcetl Documentation, Release 0.4.1

API reference documentation was auto-generated using sphinx-autoapi436.

436 https://github.com/readthedocs/sphinx-autoapi

5.1. mcetl 83

https://github.com/readthedocs/sphinx-autoapi

mcetl Documentation, Release 0.4.1

84 Chapter 5. API Reference

CHAPTER

SIX

GALLERY

Fig. 1: Selection of DataSource and processing steps for main GUI.

85

mcetl Documentation, Release 0.4.1

Fig. 2: File selection for each sample in each dataset.

Fig. 3: Options for importing raw data.

86 Chapter 6. Gallery

mcetl Documentation, Release 0.4.1

Fig. 4: Naming of samples and columns, and setup for Excel plot.

Fig. 5: The output Excel file after processing all the raw data files.

87

mcetl Documentation, Release 0.4.1

Fig. 6: The fitting GUI.

88 Chapter 6. Gallery

mcetl Documentation, Release 0.4.1

Fig. 7: Manual selection of peaks within the data.

89

mcetl Documentation, Release 0.4.1

Fig. 8: Fit results with best fit and individual peaks.

90 Chapter 6. Gallery

mcetl Documentation, Release 0.4.1

Fig. 9: Fit report for the fitting.

Fig. 10: The output Excel file after fitting.

91

mcetl Documentation, Release 0.4.1

Fig. 11: The plotting GUI.

92 Chapter 6. Gallery

CHAPTER

SEVEN

CONTRIBUTING

Contributions are welcomed and greatly appreciated.

7.1 Bugs Reports/Feedback

Report bugs or give feedback by filing an issue at https://github.com/derb12/mcetl/issues.

If you are reporting a bug, please include:

• Your operating system, Python version, and mcetl version.

• Any further details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce/identify the bug, including the code used and any tracebacks.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible to make it easier to implement.

7.2 Pull Requests

Pull requests are welcomed for this project, but please note that unsolicited pull requests are discouraged. Please file
an issue first, so that details can be discussed/finalized before a pull request is created.

Any new code or documentation must be unique (not copied from somewhere else) and able to be covered by the
BSD 3-clause license. Further, any new code should follow PEP 8437 standards as closely as possible and be fully
documented using Numpy style438 docstrings. If implementing a new feature, please provide documentation discussing
its implementation, and any necessary tests.

To clone the GitHub repository and install the needed libraries for development:

git clone https://github.com/derb12/mcetl.git
pip -r install mcetl/requirements/requirements-development.txt

When submitting a pull request, follow similar procedures for a feature request, namely:

• Explain in detail how it works.

• Keep the scope as narrow as possible to make it easier to incorporate.

437 https://www.python.org/dev/peps/pep-0008
438 https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard

93

https://github.com/derb12/mcetl/issues
https://www.python.org/dev/peps/pep-0008
https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard

mcetl Documentation, Release 0.4.1

94 Chapter 7. Contributing

CHAPTER

EIGHT

CHANGELOG

8.1 Version 0.4.1 (2021-01-26)

This is a minor patch with bug fixes.

8.1.1 Bug Fixes

• Fixed grouping of column labels for the main GUI when there are more than 9 entries for a sample.

• Fixed processing of regex separators, such as \s+ when importing data.

8.2 Version 0.4.0 (2021-01-24)

This is a minor version with new features, bug fixes, deprecations, and documentation improvements.

8.2.1 New Features

• The data import window extended the support of importing from spreadsheet-like files beyond just xlsx and
now supports importing from any spreadsheet-like file format supported by pandas.read_excel (eg. xls, xlsm,
xlsb, ods, etc). For spreadsheet formats not supported by openpyxl, and thus not supported by the default mcetl
installation, it will require installing the appropriate library. For example, to read xls files, the xlrd library would
need to be installed.

• Greatly improved load time of spreadsheets when using the data import window. Now, only one sheet is loaded
into memory at a time (if supported by the engine used for reading the spreadsheet).

• The data import window now supports importing from fixed-width files.

• Column labels and Excel plot indices are now specified individually when using the main GUI. This allows
processing uneven-sized data and working with already processed data.

• Column labels are now added to the dataframes in launch_main_gui if any processing step is specified besides
moving files.

• Excel styles no longer have to be NamedStyles, allowing not adding styles to the output Excel workbook. Also,
non-named styles are ~50% faster for writing to Excel.

• Added test_excel_styles method to DataSource, to allow testing whether the input styles will create valid Excel
styles.

• Added a more usable window for manual file selection, which is used for launch_main_gui launch_fitting_gui,
and launch_plotting_gui.

95

mcetl Documentation, Release 0.4.1

• The main GUI will now save the previous search for each DataSource separately, with a filename of previ-
ous_files_(DataSource.name).json (eg. prevous_files_XRD.json).

• Allow using all models available from lmfit and mcetl to use as the background for fitting. The few models that
need kwargs during initialization now allow selecting them in the GUI.

• Added several functions to mcetl.fitting.fitting_utils to allow using the lmfit model names within code while
displaying shortened versions in GUIs. Also, a full list of models available through lmfit and mcetl are generated
at runtime, so that the available models match for different versions.

• Created an ExcelWriterHandler class, which is used to correctly handle opening and saving existing Excel files
and to apply styles to the Excel workbook.

• Allow specifying changes to Matplotlib's rcParams for fitting when using launch_main_gui. If None are speci-
fied, will use the selected DataSource's figure_rcparams attribute.

• Allow columns to be removed by PreprocessFunctions, which also correctly updates the unique variable refer-
ences.

• When importing data, columns of the imported data are now sorted following the user-input column numbers
(eg. if the user-specified columns were 1, 0, 2, then the data would first be imported with columns ordered as
0, 1, 2 and then the columns are rearranged to 1, 0, 2. Note that column names are still specified as ascending
numbers, so even though the data corresponds to columns 1, 0, 2 in the data file, the column names in the pandas
DataFrame are still 0, 1, 2). Note that this feature was already implemented when importing from spreadsheets,
but is now extended to all other formats.

• Allow using Matplotlib keybindings for most embedded figures, such as within the fitting GUI. This allows
doing things like switching axis scales from linear to log.

• Added more fit descriptors to the saved Excel file from fitting, such as whether the fit converged and the number
of independant variables.

• Added numerical calculations for area, extremum, mode, and full-width-at-half-maximum when doing data
fitting. These calculations are performed on the peak models after fitting, and are included to at least give an
estimate of their values for models that do not have analytical solutions, like Breit-Wigner-Fano, Moffat, and
skewed Gaussian/Voigt.

• Made the file import options more flexible by allowing user to select whether or not to use same import options
for all files (option is ignored for spreadsheet-like files). Also allow inputting previous inputs for the file import
function, so that any changes to the defaults can be maintained, especially helpful when manually opening files
for fitting or plotting.

• Added a modified Breit-Wigner-Fano peak model for fitting.

• The fitting GUI now allows confirmation of the fit results before proceeding. A plot of the fit results and a
printed out fit report are given, and the user can select to go back and redo the fit.

• Allow inputting Excel styles in launch_fitting_gui so that custom styles can be used when writing fit results to
Excel when using launch_fitting_gui directly.

• Created a EmbeddedFigure class in plot_utils for easily creating windows with embedded Matplotlib figures
that optionally have events. Is easily subclassed to create custom windows with embedded figures and event
loops.

96 Chapter 8. Changelog

mcetl Documentation, Release 0.4.1

8.2.2 Bug Fixes

• DPI awareness is no longer set immediately upon importing mcetl on Windows operating systems. That
way, users can decide whether or not to set dpi awareness. To set dpi awareness, users must call
mcetl.set_dpi_awareness() before opening any GUIs.

• Correctly handle PermissionError for the main GUI when deciding which folder to save file searches to and
when writing file searches to file. PermissionError is still raised if read access is not granted, so that user is
made aware that they need to set the folder to something that grants access.

• Added a function in utils for converting pandas series to numpy with a specific dtype to reduce the chance of
error occuring during conversion.

• Fixed an issue when plotting in Excel with a log scale if one of the specified bounds was <= 0.

• The data import window will only attempt to assign indices for a DataSource's unique variables if processing.

• The entry and sample separation columns that are added when using the main GUI if processing and writing to
Excel are now removed when splitting the merged dataframes back into individual entries, so that the returned
DataFrames contain only the actual data.

• Ensured that Excel sheet names are valid.

• Simplified writing to csv for plotting GUI. Removed the column indices when reading/writing csv data within
the plotting GUI. Now, columns are just directly taken from the data.

• Switched to using df.iloc[:, col_number] rather than df[col_number] to get columns by their indices so that
dataframes with repeated column names will not produce errors.

• Made it so that '.' is removed from the user-input file extension when doing file searching only if the '.' is the
first character in the string. This way, file types with multiple extensions, like tar.gz, are now possible to use.

• The raw data generated for Raman was accidently being saved as a csv rather than as a tab-separated txt file.

• Fixed issue when using lmfit.models.ConstantModel for fitting, which gives a single value rather than an array.
Now, replace the single value with an array with the same size as the data being fit so that it does not cause
errors when plotting.

• Fixed IndexError that occurred when using the fitting GUI and trying to fit residuals.

• Fixed issue where Voigt models with manual peak selection and vary gamma parameter set to True would not
set an initial value for gamma.

8.2.3 Other Changes

• Reduced import time of mcetl. On my machine, the import time for version 0.4.0 is ~80% less than version
0.3.0.

• Replaced sympy with asteval for parsing user expressions when creating secondary axes for the plotting GUI.
This requires the user to input forward and backward expressions, but otherwise requires no changes. Also, it
technically drops a requirement for mcetl, since asteval is already required for lmfit.

• Reordered package layout. Moved all fitting related files to a mcetl.fitting, and moved all plotting related files to
mcetl.plotting. This will allow expansion of the fitting and plotting sections without burdening the main folder.

• Renamed peak_fitting_gui to fitting_gui since I intend to extend the fitting beyond just peak fitting.

• Made all of the methods that are only internally used private for DataSource and the Function objects, so that
users do not use them.

• Updated required versions for several dependencies.

8.2. Version 0.4.0 (2021-01-24) 97

mcetl Documentation, Release 0.4.1

• Added Python 3.9 to the supported Python versions.

• Created mcetl.fitting.models, which can be filled later with any additional models. Put the modified Breit-
Wigner-Fano function in fitting.models.

• Created mcetl.plot_utils that contains all helper functions and classes for plotting.

• The plotting GUI switched back to using "utf-8" encoding when saving data to a csv file (was made to use
"raw_unicode_escape" in v0.3.0).

8.2.4 Deprecations/Breaking Changes

• Renamed SeparationFunction to PreprocessFunction to make its usage more clear.

• Changed the file extension for the theme files for the plotting GUI from ".figtheme" to ".figjson" to make it more
clear that it is just a json file. Converting existing files should be easy, just change the extension.

• mcetl.launch_peak_fitting_gui() and mcetl.launch_plotting_gui() are no longer valid. Instead, use 'from mcetl
import fitting, plotting; fitting.launch_fitting_gui(); plotting.launch_plotting_gui()'.

• The keyword arguments 'excel_writer_formats' and 'figure_rcParams' for DataSource were changed to 'ex-
cel_writer_styles' and 'figure_rcparams', respectively.

• DataSource only accepts keyword arguments besides the first argmument, which is the DataSource's name.

• The keyword argument 'peaks_dataframe' for mcetl.fitting.fit_to_excel was changed to 'values_dataframe' to
make its usage more clear.

• mcetl.fitting.peak_fitting.fit_peaks no longer takes the keyword 'poly_n' as an argument. Instead, the function
takes the keyword 'background_kwargs' which is a dictionary for background keyword arguments, allowing any
model to be used as the background. For example, to get the same behavior as with the old 'poly_n' keyword,
the new input would be background_kwargs={'degree': 1}.

• Renamed datasource.py to data_source.py. This should have little effect on user code since the DataSource
object is available through the main mcetl namespace.

• Renamed the keyword argmument vary_Voigt for mcetl.fitting.peak_fitting.fit_peaks to vary_voigt.

• The constants mcetl.main_gui.SAVE_FOLDER and mcetl.fitting.peak_fitting._PEAK_TRANSFORMS
are used instead of the functions mcetl.main_gui.get_save_location (now _get_save_location) and
mcetl.fitting.peak_fitting.peak_transformer (now _peak_transformer), respectively. This way, do not need
to repeatedly call the functions, and their contents can be alterred by users, if desired.

8.2.5 Documentation/Examples

• Improved the api documentation, added tutorials, and improved the overall documentation.

• Updated example programs for all of the new changes in version 0.4.0.

• Added an example program showing how to use just mcetl.fitting.fit_peaks to do peak fitting instead of using
the fitting GUI.

• Changed the readthedocs config to create static htmlzip files in addition to pdf files each time the documentation
is built.

98 Chapter 8. Changelog

mcetl Documentation, Release 0.4.1

8.3 Version 0.3.0 (2020-11-08)

This is a minor version with new features, bug fixes, deprecations, and documentation improvements.

8.3.1 New Features

• Added functions to generate_raw_data.py to create data for pore size analysis (emulating the output of the
ImageJ software when analyzing images), uniaxial tensile tests, and rheometry.

• The plotting GUI now uses "raw_unicode_escape" encoding when saving data to a csv file. This has no impact
on the data after reloading, but it makes any Unicode more readable in the csv file. The module still uses "utf-8"
encoding as the default when loading csv files, but will fall back to "raw_unicode_escape" in the event "utf-8"
encoding errors.

• Validation of user-input in the GUIs now converts the string inputs into the desired data type during validation,
rather than requiring further processing after validation. Updated all modules for this new change.

• Added the ability to use constraints in the data validation function for user-inputs, allowing user-inputs to be
bounded between two values.

8.3.2 Bug Fixes

• Fixed issue where an additional set of data entry column labels was erroneously created when using a Summa-
ryCalculation object for summarizing data for a sample.

• Fixed issue using sorted() with strings rather than integers when sorting the indices of datasets to be deleted
when using the plotting GUI.

• Fixed the naming of the standard error for parameters from peak fitting in the output Excel file from "standard
deviation" to "standard error".

8.3.3 Other Changes

• The output of the launch_main_gui function is now a single dictionary. This will allow potential changes to the
output in later versions to not cause breaking changes.

• The output of launch_main_gui now includes the ExcelWriter object used when saving to Excel. This allows
access to the Excel file in Python after running the launch_main_gui function, in case further processing is
desired.

• The peak_fitting_gui module now includes full coverage for the data validation of user-inputs for all events.

8.3.4 Deprecations/Breaking Changes

• The output of the launch_main_gui function was changed from a tuple of items to a single, dictionary output.

8.3. Version 0.3.0 (2020-11-08) 99

mcetl Documentation, Release 0.4.1

8.3.5 Documentation/Examples

• Added DataSource objects to the use_main_gui.py example program for the three new raw data types. These
analyses are more in-depth than the existing DataSource objects, and involve both CalculationFunction and
SummaryFunction objects.

• Changed the Changelog to group changes into categories rather than labelling each change with FEATURE,
BUG, etc.

8.4 Version 0.2.0 (2020-10-05)

This is a minor version with new features, bug fixes, deprecations, and documentation improvements.

8.4.1 New Features

• Allow marking and labelling peaks in the plotting GUI.

• File searching is more flexible, allowing for different numbers of samples and files for each dataset.

• The window location for the plotting GUI is maintained when reopening the window.

• The json files (previous_search.json and the figure theme files saved by the plotting GUI) now have indentation,
making them more easily read and edited.

• Figure theme files for the plotting GUI now contain a single dictionary with all relevant sections as keys. This
allows expanding the data saved to the file in later versions without making breaking changes.

• Allow selecting which characterization techniques are used when generating raw data.

8.4.2 Bug Fixes

• Changed save location for previous_search.json to an OS-dependant location, so that the file is not overwritten
when updating the package.

• Allow doing peak fitting without saving to Excel.

8.4.3 Other Changes

• Changed the Excel start row sent to user-defined functions by adding 2 to account for the header and subheader
rows. Now formulas can directly use the start row variable, rather than having to manually add 2 each time.
Changed the use_main_gui.py example program to reflect this change.

8.4.4 Deprecations/Breaking Changes

• Figure theme (.figtheme) files saved with the plotting GUI in versions < 0.2.0 will not be compatible with
versions >= 0.2.0.

100 Chapter 8. Changelog

mcetl Documentation, Release 0.4.1

8.4.5 Documentation/Examples

• Switched from using plt.pause and a while loop to using plt.show(block=True) to keep the peak_fitting and
generate_raw_data example programs running while the plots are open.

• Made all the documentation figures have the same file extension, and made them wider so they look better in
the README where their dimensions cannot be modified.

8.5 Version 0.1.2 (2020-09-15)

This is a minor patch with a critical bug fix.

8.5.1 Bug Fixes

• Fixed issue using reversed() with a dictionary causing the plotting GUI to fail with Python 3.7. Used re-
versed(list(dictionary.keys())) instead.

8.6 Version 0.1.1 (2020-09-14)

This is a minor patch with new features, bug fixes, and documentation improvements.

8.6.1 New Features

• Extended the Unicode conversion to cover any input with "\". This mainly helps with text in the plotting GUI,
such as allowing multiline text using "\n", while still giving the correct behavior when using mathtext with
Matplotlib.

8.6.2 Bug Fixes

• Fixed how the plotting GUI handles twin axes. Now, the main axis is plotted after the twin axes so that the
bounds, tick params, and grid lines work correctly for all axes.

• Fixed an error that occurred when a DataSource object would define Excel plot indices that were larger than the
number of imported and calculation columns.

• New DataSource objects that do not provide a unique_variables input will simply have no unique variables,
rather than default "x" and "y" variables.

• Fixed an error where column labels were assigned before performing separation functions, which potentially
creates labels for less data entries than there actually are.

8.5. Version 0.1.2 (2020-09-15) 101

mcetl Documentation, Release 0.4.1

8.6.3 Documentation/Examples

• Added a more in-depth summary for the package, more explanation on the usage of the package, and screenshots
of some of the guis and program outputs to the documentation.

• Added DataSource objects with correct calculations to the example program use_main_gui.py for each of the
characterization techniques covered by mcetl's raw_data.generate_raw_data function.

8.7 Version 0.1.0 (2020-09-12)

• First release on PyPI.

102 Chapter 8. Changelog

CHAPTER

NINE

LICENSE

mcetl is open source and available under the BSD 3-clause license. For more information, refer to the license439.

439 https://github.com/derb12/mcetl/tree/main/LICENSE.txt

103

https://github.com/derb12/mcetl/tree/main/LICENSE.txt

mcetl Documentation, Release 0.4.1

104 Chapter 9. License

CHAPTER

TEN

AUTHOR

• Donald Erb <donnie.erb@gmail.com>

105

mailto:donnie.erb@gmail.com

mcetl Documentation, Release 0.4.1

106 Chapter 10. Author

CHAPTER

ELEVEN

INDICES AND TABLES

• genindex

• modindex

• search

107

mcetl Documentation, Release 0.4.1

108 Chapter 11. Indices and Tables

PYTHON MODULE INDEX

m
mcetl, 35
mcetl.data_source, 54
mcetl.excel_writer, 58
mcetl.file_organizer, 62
mcetl.fitting, 35
mcetl.fitting.fitting_gui, 36
mcetl.fitting.fitting_utils, 39
mcetl.fitting.models, 43
mcetl.fitting.peak_fitting, 44
mcetl.functions, 63
mcetl.main_gui, 67
mcetl.plot_utils, 68
mcetl.plotting, 52
mcetl.plotting.plotting_gui, 52
mcetl.raw_data, 74
mcetl.utils, 74

109

mcetl Documentation, Release 0.4.1

110 Python Module Index

INDEX

A
add_styles() (mcetl.excel_writer.ExcelWriterHandler

method), 61
axis (mcetl.plot_utils.EmbeddedFigure attribute), 69
axis_2 (mcetl.fitting.peak_fitting.BackgroundSelector

attribute), 45

B
background (mcetl.fitting.peak_fitting.PeakSelector at-

tribute), 46
BackgroundSelector (class in

mcetl.fitting.peak_fitting), 44
breit_wigner_fano_alt() (in module

mcetl.fitting.models), 43
BreitWignerFanoModel (class in

mcetl.fitting.models), 43

C
CalculationFunction (class in mcetl.functions), 64
canvas (mcetl.plot_utils.EmbeddedFigure attribute), 70
CANVAS_SIZE (in module mcetl.plot_utils), 68
canvas_size (mcetl.plot_utils.EmbeddedFigure at-

tribute), 70
check_availability() (in module mcetl.utils), 75
click_list (mcetl.plot_utils.EmbeddedFigure at-

tribute), 69
COLORS (in module mcetl.plotting.plotting_gui), 52

D
DataSource (class in mcetl.data_source), 54
determine_dpi() (in module mcetl.plot_utils), 71
doc_lru_cache() (in module mcetl.utils), 76
draw_figure_on_canvas() (in module

mcetl.plot_utils), 72

E
EmbeddedFigure (class in mcetl.plot_utils), 69
enable_keybinds (mcetl.plot_utils.EmbeddedFigure

attribute), 70
event_loop() (mcetl.fitting.fitting_gui.ResultsPlot

method), 36

event_loop() (mcetl.fitting.fitting_gui.SimpleEmbeddedFigure
method), 37

event_loop() (mcetl.fitting.peak_fitting.BackgroundSelector
method), 45

event_loop() (mcetl.fitting.peak_fitting.PeakSelector
method), 46

event_loop() (mcetl.plot_utils.EmbeddedFigure
method), 71

events (mcetl.plot_utils.EmbeddedFigure attribute), 70
excel_column_name() (in module mcetl.utils), 76
excel_styles (mcetl.data_source.DataSource

attribute), 56
ExcelWriterHandler (class in mcetl.excel_writer),

59

F
figure (mcetl.plot_utils.EmbeddedFigure attribute), 69
file_finder() (in module mcetl.file_organizer), 62
file_mover() (in module mcetl.file_organizer), 62
find_peak_centers() (in module

mcetl.fitting.peak_fitting), 46
fit_dataframe() (in module

mcetl.fitting.fitting_gui), 37
fit_peaks() (in module mcetl.fitting.peak_fitting), 47
fit_to_excel() (in module mcetl.fitting.fitting_gui),

37

G
generate_raw_data() (in module mcetl.raw_data),

74
get_dpi_correction() (in module

mcetl.plot_utils), 73
get_gui_name() (in module

mcetl.fitting.fitting_utils), 40
get_is_peak() (in module mcetl.fitting.fitting_utils),

40
get_min_size() (in module mcetl.utils), 77
get_model_name() (in module

mcetl.fitting.fitting_utils), 40
get_model_object() (in module

mcetl.fitting.fitting_utils), 40
guess() (mcetl.fitting.models.BreitWignerFanoModel

method), 43

111

mcetl Documentation, Release 0.4.1

L
launch_fitting_gui() (in module

mcetl.fitting.fitting_gui), 38
launch_main_gui() (in module mcetl.main_gui), 67
launch_plotting_gui() (in module

mcetl.plotting.plotting_gui), 53
lengths (mcetl.data_source.DataSource attribute), 57
LINE_MAPPING (in module

mcetl.plotting.plotting_gui), 52
load_previous_figure() (in module

mcetl.plotting.plotting_gui), 53

M
manual_file_finder() (in module

mcetl.file_organizer), 63
MARKERS (in module mcetl.plotting.plotting_gui), 52
mcetl

module, 35
mcetl.data_source

module, 54
mcetl.excel_writer

module, 58
mcetl.file_organizer

module, 62
mcetl.fitting

module, 35
mcetl.fitting.fitting_gui

module, 36
mcetl.fitting.fitting_utils

module, 39
mcetl.fitting.models

module, 43
mcetl.fitting.peak_fitting

module, 44
mcetl.functions

module, 63
mcetl.main_gui

module, 67
mcetl.plot_utils

module, 68
mcetl.plotting

module, 52
mcetl.plotting.plotting_gui

module, 52
mcetl.raw_data

module, 74
mcetl.utils

module, 74
merge_datasets() (mcetl.data_source.DataSource

method), 57
module

mcetl, 35
mcetl.data_source, 54
mcetl.excel_writer, 58

mcetl.file_organizer, 62
mcetl.fitting, 35
mcetl.fitting.fitting_gui, 36
mcetl.fitting.fitting_utils, 39
mcetl.fitting.models, 43
mcetl.fitting.peak_fitting, 44
mcetl.functions, 63
mcetl.main_gui, 67
mcetl.plot_utils, 68
mcetl.plotting, 52
mcetl.plotting.plotting_gui, 52
mcetl.raw_data, 74
mcetl.utils, 74

N
numerical_area() (in module

mcetl.fitting.fitting_utils), 41
numerical_extremum() (in module

mcetl.fitting.fitting_utils), 41
numerical_fwhm() (in module

mcetl.fitting.fitting_utils), 41
numerical_mode() (in module

mcetl.fitting.fitting_utils), 42

O
open_multiple_files() (in module mcetl.utils),

77
optimize_memory() (in module mcetl.utils), 77

P
PeakSelector (class in mcetl.fitting.peak_fitting), 45
picked_object (mcetl.plot_utils.EmbeddedFigure at-

tribute), 70
plot_confidence_intervals() (in module

mcetl.fitting.peak_fitting), 49
plot_fit_results() (in module

mcetl.fitting.peak_fitting), 50
plot_individual_peaks() (in module

mcetl.fitting.peak_fitting), 50
plot_peaks_for_model() (in module

mcetl.fitting.peak_fitting), 51
PlotToolbar (class in mcetl.plot_utils), 71
PreprocessFunction (class in mcetl.functions), 65
print_available_models() (in module

mcetl.fitting.fitting_utils), 42
print_column_labels_template()

(mcetl.data_source.DataSource method),
57

PROCEED_COLOR (in module mcetl.utils), 74

R
r_squared() (in module mcetl.fitting.fitting_utils), 42
r_squared_model_result() (in module

mcetl.fitting.fitting_utils), 42

112 Index

mcetl Documentation, Release 0.4.1

raw_data_import() (in module mcetl.utils), 78
references (mcetl.data_source.DataSource at-

tribute), 57
ResultsPlot (class in mcetl.fitting.fitting_gui), 36

S
safely_close_window() (in module mcetl.utils),

78
save_excel_file()

(mcetl.excel_writer.ExcelWriterHandler
method), 61

SAVE_FOLDER (in module mcetl.main_gui), 67
scale_axis() (in module mcetl.plot_utils), 73
select_file_gui() (in module mcetl.utils), 78
series_to_numpy() (in module mcetl.utils), 79
set_dpi_awareness() (in module mcetl.utils), 80
show_dataframes() (in module mcetl.utils), 80
SimpleEmbeddedFigure (class in

mcetl.fitting.fitting_gui), 36
split_into_entries()

(mcetl.data_source.DataSource method),
57

string_to_unicode() (in module mcetl.utils), 80
stringify_backslash() (in module mcetl.utils),

81
style_cache (mcetl.excel_writer.ExcelWriterHandler

attribute), 59
styles (mcetl.excel_writer.ExcelWriterHandler at-

tribute), 59
subtract_linear_background() (in module

mcetl.fitting.fitting_utils), 42
SummaryFunction (class in mcetl.functions), 65

T
test_excel_styles()

(mcetl.data_source.DataSource static method),
58

test_excel_styles()
(mcetl.excel_writer.ExcelWriterHandler class
method), 61

TIGHT_LAYOUT_H_PAD (in module
mcetl.plotting.plotting_gui), 52

TIGHT_LAYOUT_PAD (in module
mcetl.plotting.plotting_gui), 52

TIGHT_LAYOUT_W_PAD (in module
mcetl.plotting.plotting_gui), 53

toolbar_canvas (mcetl.plot_utils.EmbeddedFigure
attribute), 70

toolbar_class (mcetl.plot_utils.EmbeddedFigure at-
tribute), 70

V
validate_inputs() (in module mcetl.utils), 81

validate_sheet_name() (in module mcetl.utils),
82

W
window (mcetl.plot_utils.EmbeddedFigure attribute), 70
WindowCloseError, 75
with_traceback() (mcetl.utils.WindowCloseError

method), 75
writer (mcetl.excel_writer.ExcelWriterHandler at-

tribute), 60

X
x (mcetl.plot_utils.EmbeddedFigure attribute), 69
xaxis_limits (mcetl.plot_utils.EmbeddedFigure at-

tribute), 70

Y
y (mcetl.plot_utils.EmbeddedFigure attribute), 69
yaxis_limits (mcetl.plot_utils.EmbeddedFigure at-

tribute), 70

Index 113

	Introduction
	Purpose
	Limitations

	Installation
	Dependencies
	Stable Release
	Development Version

	Quick Start
	Main GUI
	Fitting Data
	Plotting

	Tutorials
	Main GUI
	Fitting GUI
	Plotting GUI
	Importing Data
	Writing to Excel
	Example Data & Programs

	API Reference
	mcetl

	Gallery
	Contributing
	Bugs Reports/Feedback
	Pull Requests

	Changelog
	Version 0.4.1 (2021-01-26)
	Version 0.4.0 (2021-01-24)
	Version 0.3.0 (2020-11-08)
	Version 0.2.0 (2020-10-05)
	Version 0.1.2 (2020-09-15)
	Version 0.1.1 (2020-09-14)
	Version 0.1.0 (2020-09-12)

	License
	Author
	Indices and Tables
	Python Module Index
	Index

